Abstract

Radial turbines are frequently submitted to unsteady inlet flows, for example, in turbocharging applications. Complex flows dominated by waves propagation take place, and advanced methodologies are required. Such complexity is hardly compatible with industrial constraints and design time scales. Also, the validity of the usual performance indicators, such as efficiency, is questionable in unsteady flows. However, the need for simplification led the community to develop modeling strategies for unsteady effects, based on hypotheses. One of those is that the rotor flow is assumed quasi-steady. This assumption is assessed by different criteria of the literature. It also enables an adaptation of performance indicators such as efficiency and pressure ratio. But the validity of such an assumption is still under discussion. The present paper is a contribution to this discussion. It focuses on a physical analysis of the physics involved in unsteady flows and the consequences that it produces on the instantaneous performance. Unsteady numerical simulations are analyzed, performed on a realistic radial turbine stage, which was submitted to different transient phases. An instantaneous overshoot of the turbine torque is observed for some transient regimes. Such a result demonstrates that the rotor flow is not immune to unsteady effects. A discussion is then conducted around the possible validity of the quasi-steady assumption for the rotor. This discussion includes the different criteria already found in the literature, and the alternative formulation proposed in this contribution, based on the ratio of time scales.

References

1.
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
, “
Thermodynamic Cycle Analysis of Pulse Detonation Engines
,”
J. Propul. Power.
,
18
(
1
), pp.
68
76
.
2.
George
,
A. S.
,
Driscoll
,
R.
,
Gutmark
,
E.
, and
Munday
,
D.
,
2014
, “
Experimental Comparison of Axial Turbine Performance Under Steady and Pulsating Flows
,”
ASME J. Turbomach.
,
136
(
11
), p.
111005
.
3.
Naples
,
A.
,
Hoke
,
J.
,
Battelle
,
R.
, and
Schauer
,
F.
,
2019
, “
T63 Turbine Response to Rotating Detonation Combustor Exhaust Flow
,”
ASME J. Eng. Gas. Turbines. Power.
,
141
(
2
), p.
021029
.
4.
Anand
,
V.
,
George
,
A. S.
,
Knight
,
E.
, and
Gutmark
,
E.
,
2019
, “
Investigation of Pulse Detonation Combustors–Axial Turbine System
,”
Aerospace Sci. Technol.
,
93
, p.
105350
.
5.
Sousa
,
J.
,
Paniagua
,
G.
, and
Morata
,
E. C.
,
2017
, “
Thermodynamic Analysis of a Gas Turbine Engine With a Rotating Detonation Combustor
,”
Appl. Energy.
,
195
, pp.
247
256
.
6.
Yokoo
,
R.
,
Goto
,
K.
,
Kasahara
,
J.
,
Athmanathan
,
V.
,
Braun
,
J.
,
Paniagua
,
G.
,
Meyer
,
T. R.
,
Kawasaki
,
A.
,
Matsuoka
,
K.
,
Matsuo
,
A.
, and
Funaki
,
I.
,
2021
, “
Experimental Study of Internal Flow Structures in Cylindrical Rotating Detonation Engines
,”
Proc. Combust. Inst.
,
38
(
3
), pp.
3759
3768
.
7.
Benson
,
R. S.
, and
Scrimshaw
,
K. H.
,
1965
, “
Paper 23: An Experimental Investigation of Non-Steady Flow in a Radial Gas Turbine
,”
Proceedings of the Institution of Mechanical Engineers, Conference Proceedings
,
London, UK
,
June
, Vol.
180, No. 10
,
SAGE Publications
,
Sage UK
, pp.
74
85
.
8.
Wallace
,
F.
, and
Blair
,
G.
,
1965
, “
Pulsating-Flow Performance of Inward Radial-Flow Turbines
,” Mechanical Engineering, Vol.
87
, p.
141
.
9.
Baines
,
N.
,
2010
, “
Turbocharger Turbine Pulse Flow Performance and Modelling 25 Years On
,”
9th International Conference on Turbochargers and Turbocharging
,
IMechE
,
London
, May 19–20,
Paper No. C1302/028
.
10.
Chiong
,
M.
,
Rajoo
,
S.
,
Romagnoli
,
A.
,
Costall
,
A.
, and
Martinez-Botas
,
R.
,
2015
, “
Non-Adiabatic Pressure Loss Boundary Condition for Modelling Turbocharger Turbine Pulsating Flow
,”
Energy. Convers. Manage.
,
93
, pp.
267
281
.
11.
Galindo
,
J.
,
Tiseira
,
A.
,
Fajardo
,
P.
, and
García-Cuevas
,
L.
,
2014
, “
Development and Validation of a Radial Variable Geometry Turbine Model for Transient Pulsating Flow Applications
,”
Energy. Convers. Manage.
,
85
, pp.
190
203
.
12.
Nakamura
,
Y.
,
Chinen
,
M.
,
Sakakibara
,
M.
, and
Miyagawa
,
K.
,
2018
, “
Influence of Pulsating Flow on Turbine Performance Investigated by Des and PIV
,”
ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting
,
Montreal Quebec, Canada
,
July
,
American Society of Mechanical Engineers Digital Collection
.
13.
Liu
,
Z.
, and
Copeland
,
C.
,
2020
, “
Optimization of a Radial Turbine for Pulsating Flows
,”
J. Eng. Gas. Turbines. Power.
,
142
(
5
), p.
051009
.
14.
Gugau
,
M.
, and
Roclawski
,
H.
,
2014
, “
On the Design and Matching of Turbocharger Single Scroll Turbines for Pass Car Gasoline Engines
,”
ASME J. Eng. Gas. Turbines. Power.
,
136
(
12
), p.
122602
.
15.
Binder
,
N.
,
Garcia Benitez
,
J.
, and
Carbonneau
,
X.
,
2013
, “
Dynamic Response in Transient Operation of a Variable Geometry Turbine Stage: Influence of the Aerodynamic Performance
,”
Int. J. Rotating Machinery
,
2013
, p.
11
.
16.
Cao
,
T.
,
Xu
,
L.
,
Yang
,
M.
, and
Martinez-Botas
,
R. F.
,
2014
, “
Radial Turbine Rotor Response to Pulsating Inlet Flows
,”
ASME J. Turbomach.
,
136
(
7
), p.
071003
.
17.
Hermet
,
F.
,
Binder
,
N.
, and
Gressier
,
J.
,
2019
, “
Transient Flow in Infinitely Thin Airfoil Cascade
,”
13th European Conference on Turbomachinery Fluid Dynamics & Thermodynamics
,
Lausanne, Switzerland
,
April
,
European Turbomachinery Society
.
18.
Copeland
,
C.
,
Newton
,
P.
,
Martinez-Botas
,
R.
, and
Seiler
,
M.
,
2012
, “
A Comparison of Pulsed Flow Timescales Within A Turbine Stage
,”
10th IMECHE International Conference on Turbochargers and Turbocharging
,
Bath, UK
,
May
,
University of Bath
.
19.
Lee
,
J.
,
Tan
,
C. S.
,
Sirakov
,
B. T.
,
Im
,
H.-S.
,
Babak
,
M.
,
Tisserant
,
D.
, and
Wilkins
,
C.
,
2017
, “
Performance Metric for Turbine Stage Under Unsteady Pulsating Flow Environment
,”
ASME J. Eng. Gas. Turbines. Power.
,
139
(
7
), p.
072606
.
20.
Winterbone
,
D.
,
Nikpour
,
B.
, and
Alexander
,
G.
,
1990
, “
Measurement of the Performance of a Radial Inflow Turbine in Conditional Steady and Unsteady Flow
,”
Proceedings of the 4th International Conference on Turbocharging and Turbochargers
,
London, UK
,
May
, pp.
22
24
.
21.
Palfreyman
,
D.
, and
Martinez-Botas
,
R.
,
2005
, “
The Pulsating Flow Field in a Mixed Flow Turbocharger Turbine: An Experimental and Computational Study
,”
ASME J. Turbomach.
,
127
(
1
), pp.
144
155
.
22.
Fernelius
,
M. H.
, and
Gorrell
,
S. E.
,
2017
, “
Predicting Efficiency of a Turbine Driven by Pulsing Flow
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June
,
American Society of Mechanical Engineers Digital Collection
.
23.
Lee
,
S. P.
,
Jupp
,
M. L.
,
Barrans
,
S. M.
, and
Nickson
,
A. K.
,
2018
, “
Analysis of Leading Edge Flow Characteristics in a Mixed Flow Turbine Under Pulsating Flows
,”
Proc. Inst. Mech. Eng., Part A: J. Power and Energy
,
233
(
1
), pp.
78
95
.
24.
Lee
,
S. P.
,
Jupp
,
M. L.
,
Barrans
,
S. M.
, and
Nickson
,
A. K.
,
2019
, “
Analysis of Leading Edge Flow Characteristics in a Mixed Flow Turbine Under Pulsating Flows
,”
Proc. Inst. Mech. Eng., Part A: J. Power and Energy
,
233
(
1
), pp.
78
95
.
25.
Chen
,
H.
, and
Winterbone
,
D.
,
1990
, “
A Method to Predict Performance of Vaneless Radial Turbines Under Steady and Unsteady Flow Conditions
,”
IMechE Turbocharging and Turbochargers
, Paper No. (C405/008), pp.
13
22
.
26.
Szymko
,
S.
,
Martinez-Botas
,
R.
, and
Pullen
,
K.
,
2005
, “
Experimental Evaluation of Turbocharger Turbine Performance Under Pulsating Flow Conditions
,”
ASME Turbo Expo 2005: Power for Land, Sea, and Air
,
Reno NV
,
June
,
American Society of Mechanical Engineers
, pp.
1447
1457
.
27.
Winterbone
,
D.
,
Nikpour
,
B.
, and
Frost
,
H.
,
1991
, “
A Contribution to The Understanding of Turbocharger Turbine Performance in Pulsating Flow
,”
Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science
, Paper No. C433/011, pp.
19
28
.
28.
Liu
,
Z.
, and
Copeland
,
C.
,
2018
, “
New Method for Mapping Radial Turbines Exposed to Pulsating Flows
,”
Energy
,
162
, pp.
1205
1222
.
29.
Ding
,
Z.
,
Zhuge
,
W.
,
Zhang
,
Y.
,
Chen
,
H.
, and
Martinez-Botas
,
R.
,
2017
, “
Investigation on Pulsating Flow Effect of a Turbocharger Turbine
,”
ASME 2017 Fluids Engineering Division Summer Meeting
,
Waikoloa, HI
,
July
,
American Society of Mechanical Engineers
, p.
V01AT02A008
.
30.
Whitham
,
G.
,
1958
, “
On the Propagation of Shock Waves Through Regions of Non-Uniform Area Or Flow
,”
J. Fluid. Mech.
,
4
(
4
), pp.
337
360
.
31.
Cambier
,
L.
, and
Gazaix
,
M.
,
2002
, “
elsA: An Efficient Object-Oriented Solution to CFD Complexity
,”
Proceeding of the 40th Aerospace Science Meeting and Exhibit
,
Reno, NV
,
January
.
32.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
La Recherche Aérospaciale
,
1
, pp.
5
21
.
33.
Jameson
,
A.
,
1991
, “
Time Dependent Calculations Using Multigrid, With Applications to Unsteady Flows Airfoils and Wings
,”
10th AIAA Computational Fluid Dynamics Conference
, Paper No. 91-1596, Reno, NV.
34.
Yoon
,
S.
, and
Jameson
,
A.
,
2002
, “
An LU-SSOR Scheme for the Euler and Navier-Stokes Equation
,”
AIAA 25th Aerospace Science Meeting
, Paper No. 87-0600, Reno, NV.
35.
Filola
,
G.
,
Pape
,
M. C. L.
, and
Montagnac
,
M.
,
2004
, “
Numerical Simulations Around Wing Control Surfaces
,”
24th ICAS Meeting
,
Yokohama, Japan
,
September
.
36.
Szymko
,
S.
,
McGlashan
,
N.
,
Martinez-Botas
,
R.
, and
Pullen
,
K.
,
2007
, “
The Development of a Dynamometer for Torque Measurement of Automotive Turbocharger Turbines
,”
Proc. Inst. Mech. Eng., Part D: J. Automobile Eng.
,
221
(
2
), pp.
225
239
.
37.
Hermet
,
F.
, “
Simulation Des Transitoires Violents et des écoulements pulsés dans les turbines
,” Ph.D. thesis, ISAE-Supaero, Toulouse, France.
You do not currently have access to this content.