Abstract

The Spalart–Allmaras (SA) turbulence model is one of the most popular models applied to compressors, but it often over-predicts blockage size and hence under-predicts the stall margin. In this paper, a novel modification to the SA model is proposed to improve the prediction of compressor near-stall flows. The modification is based on the dimensionless vortical pressure gradient, which identifies blockage cells featured by 3D swirling, adverse pressure gradient, and low-momentum flows. It unblocks the compressor passage by enhancing the eddy viscosity in the identified blockage cells; whereas in canonical 2D flows the modification is automatically switched off. The model coefficients are calibrated via Bayesian inference, which considers the uncertainties involved in experiments and computational fluid dynamics (CFD) simulations of turbomachinery. The rotor exit radial profile data of NASA Rotor 67 at peak-efficiency and near-stall points are used for calibration. The calibrated model is tested extensively in four compressors covering both tip blockage and corner separation as well as both industrial and laboratory Reynolds number and Mach number. For the NASA Rotor 67 and the TUDa-GLR-OpenStage, the proposed model predicts more accurate stall margins at all operating speeds due to the tip unblocking effect. For the BUAA Stage B rotor, the proposed model predicts the tip blockage size and thus the stall margin more accurately. For the LMFA NACA65 cascade, the proposed model with the quadratic constitutive relation (QCR) achieves significant improvement in predicting the exit profiles due to the unblocking effect on the corner separation. The proposed model, termed as SA-PGω in this work, is a promising engineering tool for future Reynolds-averaged Navier–Stokes (RANS) simulations of compressor near-stall flows.

References

1.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
2.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,” ASME Paper No. GT2010-22540.
3.
Duraisamy
,
K.
,
Iaccarino
,
G.
, and
Xiao
,
H.
,
2019
, “
Turbulence Modeling in the Age of Data
,”
Annu. Rev. Fluid Mech.
,
51
(
1
), pp.
357
377
.
4.
Spalart
,
P.
, and
Allmaras
,
S.
,
1994
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
Rech. Aerospatiale
,
1
, pp.
5
21
.
5.
He
,
X.
,
Zhao
,
F.
, and
Vahdati
,
M.
,
2020
, “
Uncertainty Quantification of Spalart–Allmaras Turbulence Model Coefficients for Simplified Compressor Flow Features
,”
ASME J. Fluids Eng.
,
142
(
9
), p.
091501
.
6.
He
,
X.
,
Zhao
,
F.
, and
Vahdati
,
M.
,
2021
, “
Uncertainty Quantification of Spalart–Allmaras Turbulence Model Coefficients for Compressor Stall
,”
ASME J. Turbomach.
,
143
(
8
), p.
081007
.
7.
Matsui
,
K.
,
Perez
,
E.
,
Kelly
,
R. T.
,
Tani
,
N.
, and
Jemcov
,
A.
,
2021
, “
Calibration of Spalart–Allmaras Model for Simulation of Corner Flow Separation in Linear Compressor Cascade
,”
J. Glob. Power Propuls. Soc.
,
5
, pp.
1
16
.
8.
Shur
,
M. L.
,
Strelets
,
M. K.
,
Travin
,
A. K.
, and
Spalart
,
P. R.
,
2000
, “
Turbulence Modeling in Rotating and Curved Channels: Assessing the Spalart–Shur Correction
,”
AIAA J.
,
38
(
5
), pp.
784
792
.
9.
Dufour
,
G.
,
Cazalbou
,
J.-B.
,
Carbonneau
,
X.
, and
Chassaing
,
P.
,
2008
, “
Assessing Rotation/Curvature Corrections to Eddy-Viscosity Models in the Calculations of Centrifugal-Compressor Flows
,”
ASME J. Fluids Eng.
,
130
(
9
), p.
091401
.
10.
He
,
X.
,
Zhao
,
F.
, and
Vahdati
,
M.
,
2020
, “
Evaluation of Spalart–Allmaras Turbulence Model Forms for a Transonic Axial Compressor
,” GPPS Paper No. GPPS-CH-2020-0013.
11.
Liu
,
Y.
,
Lu
,
L.
,
Fang
,
L.
, and
Gao
,
F.
,
2011
, “
Modification of Spalart–Allmaras Model With Consideration of Turbulence Energy Backscatter Using Velocity Helicity
,”
Phys. Lett. A
,
375
(
24
), pp.
2377
2381
.
12.
Ma
,
L.
,
Lu
,
L.
,
Fang
,
J.
, and
Wang
,
Q.
,
2014
, “
A Study on Turbulence Transportation and Modification of Spalart–Allmaras Model for Shock-Wave/Turbulent Boundary Layer Interaction Flow
,”
Chin. J. Aeronaut.
,
27
(
2
), pp.
200
209
.
13.
Lee
,
K. B.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan—Part I: Modification of Spalart–Allmaras Turbulence Model
,”
ASME J. Turbomach.
,
140
(
5
), p.
051008
.
14.
Lee
,
K. B.
,
Dodds
,
J.
,
Wilson
,
M.
, and
Vahdati
,
M.
,
2018
, “
Validation of a Numerical Model for Predicting Stalled Flows in a Low-Speed Fan—Part II: Unsteady Analysis
,”
ASME J. Turbomach.
,
140
(
5
), p.
051009
.
15.
Moreno
,
J.
,
Dodds
,
J.
,
Stapelfeldt
,
S.
, and
Vahdati
,
M.
,
2020
, “
Deficiencies in the Spalart–Allmaras Turbulence Model for the Prediction of the Stability Boundary in Highly Loaded Compressors
,”
ASME J. Turbomach.
,
142
(
12
), p.
121012
.
16.
Jefferson-Loveday
,
R. J.
,
Tucker
,
P. G.
,
Northall
,
J. D.
, and
Nagabhushana Rao
,
V.
,
2013
, “
Differential Equation Specification of Integral Turbulence Length Scales
,”
ASME J. Turbomach.
,
135
(
3
), p.
031013
.
17.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
.
18.
Mani
,
M.
,
Babcock
,
D.
,
Winkler
,
C.
, and
Spalart
,
P.
,
2013
, “
Predictions of a Supersonic Turbulent Flow in a Square Duct
,” AIAA Paper No. 2013–0860.
19.
Rumsey
,
C.
,
Carlson
,
J.-R.
,
Pulliam
,
T.
, and
Spalart
,
P.
,
2020
, “
Improvements to the Quadratic Constitutive Relation Based on NASA Juncture Flow Data
,”
AIAA J.
,
58
(
10
), pp.
4374
4384
.
20.
Su
,
X.
, and
Yuan
,
X.
,
2017
, “
Improved Compressor Corner Separation Prediction Using the Quadratic Constitutive Relation
,”
Proc. Inst. Mech. Eng. A: J. Power Energy
,
231
(
7
), pp.
618
630
.
21.
Scillitoe
,
A. D.
,
Tucker
,
P. G.
, and
Adami
,
P.
,
2015
, “
Evaluation of RANS and ZDES Methods for the Prediction of Three-Dimensional Separation in Axial Flow Compressors
,” ASME Paper No. GT2015-43975.
22.
Li
,
W.
, and
Liu
,
Y.
,
2019
, “
Numerical Investigation of Corner Separation Flow Using Spalart-Allmaras Model with Various Modifications
,”
Aerosp. Sci. Technol.
,
127
, p.
107682
.
23.
Spalart
,
P. R.
,
2015
, “
Philosophies and Fallacies in Turbulence Modeling
,”
Prog. Aerosp. Sci.
,
74
, pp.
1
15
.
24.
Spalart
,
P. R.
,
Shur
,
M. L.
,
Strelets
,
M. K.
, and
Travin
,
A. K.
,
2015
, “
Direct Simulation and RANS Modelling of a Vortex Generator Flow
,”
Flow Turbul. Combust.
,
95
(
2
), pp.
335
350
.
25.
Jameson
,
A.
,
Schmidt
,
W.
, and
Turkel
,
E.
,
1981
, “
Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge Kutta Time Stepping Schemes
,”
14th Fluid and Plasma Dynamics Conference
, AIAA Paper No. 81–1259.
26.
Roe
,
P. L.
,
1981
, “
Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes
,”
J. Comput. Phys.
,
43
(
2
), pp.
357
372
.
27.
Pope
,
S.
,
2000
,
Turbulent Flows
,
Cambridge University Press
,
Cambridge, UK
.
28.
Cheung
,
S. H.
,
Oliver
,
T. A.
,
Prudencio
,
E. E.
,
Prudhomme
,
S.
, and
Moser
,
R. D.
,
2011
, “
Bayesian Uncertainty Analysis With Applications to Turbulence Modeling
,”
Reliab. Eng. Syst. Saf.
,
96
(
9
), pp.
1137
1149
.
29.
Strazisar
,
A. J.
,
Wood
,
J. R.
,
Hathaway
,
M. D.
, and
Suder
,
K. L.
,
1989
, “
Laser Anemometer Measurements in a Transonic Axial-Flow Fan Rotor
,” Technical Report,
NASA Lewis Research Center
,
Cleveland, OH
, NASA-TP-2879.
30.
Grosvenor
,
A. D.
,
2007
, “
RANS Prediction of Transonic Compressive Rotor Performance Near Stall
,” ASME Paper No. GT2007-27691.
31.
Fidalgo
,
J. V.
,
Hall
,
C. A.
, and
Colin
,
Y.
,
2012
, “
A Study of Fan-Distortion Interaction Within the NASA Rotor 67 Transonic Stage
,”
ASME J. Turbomach.
,
134
(
9
), p.
051011
.
32.
Spalart
,
P. R.
, and
Rumsey
,
C. L.
,
2007
, “
Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations
,”
AIAA J.
,
45
(
10
), pp.
2544
2553
.
33.
Vahdati
,
M.
,
Sayma
,
A. I.
,
Freeman
,
C.
, and
Imregun
,
M.
,
2005
, “
On the Use of Atmospheric Boundary Conditions for Axial-Flow Compressor Stall Simulations
,”
ASME J. Turbomach.
,
127
(
2
), pp.
349
351
.
34.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
35.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
36.
Sandberg
,
R. D.
, and
Michelassi
,
V.
,
2019
, “
The Current State of High-Fidelity Simulations for Main Gas Path Turbomachinery Components and Their Industrial Impact
,”
Flow Turbul. Combust.
,
102
(
4
), pp.
797
848
.
37.
Klausmann
,
F.
,
Franke
,
D.
,
Foret
,
J.
, and
Schiffer
,
H.-P.
,
2021
, “
Transonic Compressor Darmstadt—Open Test Case
,” GPPS Paper No. GPPS-TC-2021-0029.
38.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
,
Trébinjac
,
I.
, and
Roumeas
,
M.
,
2016
, “
Numerical Investigation of Kelvin–Helmholtz Instability in a Centrifugal Compressor Operating Near Stall
,”
ASME J. Turbomach.
,
138
(
7
), p.
071007
.
39.
Du
,
H.
,
Yu
,
X.
,
Zhang
,
Z.
, and
Liu
,
B.
,
2013
, “
Relationship Between the Flow Blockage of Tip Leakage Vortex and Its Evolutionary Procedures Inside the Rotor Passage of a Subsonic Axial Compressor
,”
J. Therm. Sci.
,
22
(
6
), pp.
522
531
.
40.
Liu
,
B.
,
An
,
G.
,
Yu
,
X.
, and
Zhang
,
Z.
,
2016
, “
Experimental Investigation of the Effect of Rotor Tip Gaps on 3D Separating Flows Inside the Stator of a Highly Loaded Compressor Stage
,”
Exp. Therm. Fluid Sci.
,
75
, pp.
96
107
.
41.
An
,
G.
,
Zhang
,
S.
,
Yu
,
X.
,
Liu
,
B.
, and
Yi
,
G.
,
2020
, “
Experimental Study of the Critical Incidence Phenomena in Low Speed Compressor Stators With Both Conventional and 3D Blading Designs
,”
Aerosp. Sci. Technol.
,
99
, p.
105771
.
42.
Liu
,
B.
,
Qiu
,
Y.
,
An
,
G.
, and
Yu
,
X.
,
2020
, “
Utilization of Zonal Method for Five-Hole Probe Measurements of Complex Axial Compressor Flows
,”
ASME J. Fluids Eng.
,
142
(
6
), p.
061504
.
43.
Liu
,
Y.
,
Zhong
,
L.
, and
Lu
,
L.
,
2019
, “
Comparison of DDES and URANS for Unsteady Tip Leakage Flow in an Axial Compressor Rotor
,”
ASME J. Fluids Eng.
,
141
(
12
), p.
121405
.
44.
He
,
X.
,
Zhao
,
F.
, and
Vahdati
,
M.
,
2022
, “
Detached Eddy Simulation: Recent Development and Application to Compressor Tip Leakage Flow
,”
ASME J. Turbomach.
,
144
(
1
), p.
011009
.
45.
He
,
X.
,
Fang
,
Z.
,
Rigas
,
G.
, and
Vahdati
,
M.
,
2021
, “
Spectral Proper Orthogonal Decomposition of Compressor Tip Leakage Flow
,”
Phys. Fluids
,
33
(
10
), p.
105105
.
46.
Ma
,
W.
,
2012
, “
Experimental Investigation of Corner Stall in a Linear Compressor Cascade
,” Ph.D. thesis,
École Centrale de Lyon
.
47.
Zambonini
,
G.
,
2016
, “
Unsteady Dynamics of Corner Separation in a Linear Compressor Cascade
,” Ph.D. thesis,
École Centrale de Lyon
.
48.
Sun
,
J.
,
2018
, “
Investigation and Control of Three-Dimensional Separation/Stall in Compressors
,” Ph.D. thesis,
École Centrale de Lyon
.
49.
Gao
,
F.
,
2014
, “
Advanced Numerical Simulation of Corner Separation in a Linear Compressor Cascade
,” Ph.D. thesis,
École Centrale de Lyon
.
50.
Wang
,
H.
,
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2017
, “
Entropy Analysis of the Interaction Between the Corner Separation and Wakes in a Compressor Cascade
,”
Entropy
,
19
(
7
), p.
324
.
51.
Xia
,
G.
,
Medic
,
G.
, and
Praisner
,
T. J.
,
2018
, “
Hybrid RANS/LES Simulation of Corner Stall in a Linear Compressor Cascade
,”
ASME J. Turbomach.
,
140
(
8
), p.
081004
.
52.
Roache
,
P. J.
,
1998
,
Verification and Validation in Computational Science and Engineering
,
Hermosa
,
Albuquerque, NM
.
You do not currently have access to this content.