Abstract

This paper presents the impact of an axially tilted variable stator vane (VSV) platform on penny cavity flow and passage flow, with the aid of both optical and pneumatic measurements in an annular cascade wind tunnel as well as steady computational fluid dynamics (CFD) analyses. Variable stator vanes in axial compressors require a clearance from the endwalls. This means that penny cavities around the vane platform are inevitable. Production and assembly deviations can result in a vane platform which is tilted about the circumferential axis. Penny cavity and main flow in geometries with and without platform tilting were compared in an annular cascade wind tunnel. Detailed particle image velocimetry (PIV) measurements were conducted inside the penny cavity and in the vane passage. Steady pressure and velocity data was obtained by two-dimensional multi-hole pressure probe traverses in the inflow and the outflow. Furthermore, pneumatic measurements were carried out using pressure taps inside the penny cavity. Additionally, oil flow visualization was conducted on the airfoil, hub, and penny cavity surfaces. Steady CFD simulations have been benchmarked against experimental data. The results show that tilting the vane platform reduces the penny cavity leakage mass flow. By decreasing penny cavity leakage, platform tilting also affects the passage flow where it leads to a reduced turbulence level and total pressure loss in the leakage flow region. In summary, the paper demonstrates the influence of penny platform tilting on cavity flow and passage flow and provides new insights into the mechanisms of penny cavity-associated losses.

References

1.
Grieb
,
H.
,
2009
,
Verdichter für Turbo-Flugtriebwerke
,
Springer-Verlag
,
Berlin/Heidelberg
.
2.
Wellborn
,
S. R.
,
1996
, “
Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressor Aerodynamic Performance
,”
Ph.D. dissertation
,
Iowa State University
,
Ames, IA
.
3.
Wolf
,
H.
,
2017
, “
Aerodynamische Bewertung von Penny-Kavitäten bei Verstellstatoren in Hochdruckverdichtern
,”
Ph.D. dissertation
,
Ruhr-Universität Bochum
,
Bochum, Germany
.
4.
Gottschall
,
M.
,
Vogeler
,
K.
, and
Mailach
,
R.
,
2012
, “
The Effect of Four Part Gap Geometry Configurations for Variable Stator Vanes in a Compressor Cascade
,”
Proceedings of ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15, 2012
,
ASME Paper No. GT2012-69757
.
5.
Gottschall
,
M.
,
Mailach
,
R.
, and
Vogeler
,
K.
,
2012
, “
Penny Gap Effect on Performance and Secondary Flowfield in a Compressor Cascade
,”
ASME J. Propul. Power
,
28
(
5
), pp.
927
935
.
6.
Gottschall
,
M.
,
Vogeler
,
K.
, and
Mailach
,
R.
,
2012
, “
The Effect of Two Different Endwall-Penny Concepts for Variable Stator Vanes in a Compressor Cascade
,”
Proceedings of ASME Turbo Expo 2012
,
Copenhagen, Denmark
,
June 11–15
,
ASME Paper No. GT2012-68404
.
7.
Escuret
,
J. F.
,
Veysseyre
,
P.
,
Villain
,
M.
,
Savarese
,
S.
,
Bois
,
G.
, and
Navière
,
H.
,
1997
, “
Effect of a Mismatch Between the Buttons of Variable Stator Vanes and the Flowpath in a Highly Loaded Transonic Compressor Stage
,”
Proceedings of the International Gas Turbine & Aeroengine Congress & Exhibition
,
Orlando, FL
,
June 2–5
,
ASME Paper No. 97-GT-471
.
8.
Wolf
,
H.
,
Franke
,
M.
,
Halcoussis
,
A.
,
Kleinclaus
,
C.
, and
Gautier
,
S.
,
2016
, “
Investigation of Penny Leakage Flows of Variable Guide Vanes in High Pressure Compressors
,”
Proceedings of ASME Turbo Expo 2016
,
Seoul, South Korea
,
June 13–17
,
ASME Paper No. GT2016-56327
.
9.
Stummann
,
S.
,
Pohl
,
D.
,
Jeschke
,
P.
,
Wolf
,
H.
,
Halcoussis
,
A.
, and
Franke
,
M.
,
2017
, “
Secondary Flow in Variable Stator Vanes with Penny-Cavities
,”
Proceedings of ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
,
ASME Paper No. GT2017-63771
.
10.
Stummann
,
S.
,
2018
, “
Sekundärströmung und Verluste aufgrund von Penny-Kavitäten in Verstellleitschaufeln
,”
Ph.D. dissertation
,
RWTH Aachen University
,
Aachen, Germany
.
11.
Pohl
,
D.
,
Janssen
,
J.
,
Jeschke
,
P.
,
Halcoussis
,
A.
, and
Wolf
,
H.
,
2020
, “
Variable Stator Vane Penny Gap Aerodynamic Measurements and Numerical Analysis in an Annular Cascade Wind Tunnel
,”
Int. J. Gas Turbine Propul. Power Syst.
,
11
(
2
), pp.
44
55
.
12.
Gallus
,
H. E.
, and
Bohn
,
D.
,
1977
, “
Multi-Parameter Approximation of Calibrating Values for Multi-Hole Probes
,”
Communication de l'institut de Thermique Appliquée de l'école Polytechnique Fédérale de Lausanne
,
5
(
1
), pp.
31
37
.
13.
Vinnemeier
,
F.
,
Simon
,
L.
, and
Koschel
,
W.
,
1990
, “
Korrektur des Kopfgeometrieeinflusses Einer Fünfloch-Drucksonde auf die Meßergebnisse
,”
Technisches Messen
,
57
(
JG
), pp.
296
303
.
14.
Parvizinia
,
M.
, and
Salchow
,
K.
,
1993
,
Verfahren zur Korrektur des Gradientenfehlers bei Messungen mit Pneumatischen Mehrlochsonden
,
Institute of Jet Propulsion and Turbomachinery, RWTH Aachen University
,
Aachen, Germany
.
15.
Becker
,
K.
, and
Ashcroft
,
G.
,
2014
, “
A Comparative Study of Gradient Reconstruction Methods for Unstructured Meshes With Application to Turbomachinery Flows
,”
AIAA SciTech—52nd Aerospace Sciences Meeting
,
National Harbor, MD
,
Jan. 13–17
,
Paper No. AIAA 2014-0069
.
16.
Venkatakrishnan
,
V.
,
1995
, “
Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters
,”
J. Comput. Phys.
,
118
(
1
), pp.
120
130
.
17.
Wilcox
,
David C.
,
1988
, “
Reassessment of the Scale-Determining Equation for Advanced Turbulence Models
,”
AIAA J.
,
26
(
11
), pp.
1299
1310
.
18.
Kato
,
M.
, and
Launder
,
B. E.
,
1993
, “
The Modeling of Turbulent Flow Around Stationary and Vibrating Square Cylinders
,”
Ninth Symposium on “Turbulent Shear Flows”
,
Kyoto, Japan
,
Aug. 16–18
.
You do not currently have access to this content.