Abstract

The adaptive, ℓ2–ω delayed detached eddy simulation model was selected to simulate the flow in the V103 linear compressor cascade. The Reynolds number based on axial chord length is 138, 500. Various inflow turbulent intensities from 0% to 10% were tested to evaluate the performance of the adaptive model. The adaptive model is capable of capturing the laminar boundary layer and the large-scale perturbations inside it. The instability of large-scale disturbances signals the switch to a hybrid simulation of the turbulent boundary layer—thus, the transition front is predicted. In the case of separation-induced transition, the adaptive model, which uses eddy simulation in separated flow, can predict the separation bubble size accurately. Generally, the adaptive ℓ2–ω model can simulate the transitional separated flow in a linear compressor cascade, with a correct response to varying turbulent intensities.

References

1.
Lin
,
D.
,
Su
,
X.
, and
Yuan
,
X.
,
2018
, “
DDES Analysis of the Wake Vortex Related Unsteadiness and Losses in the Environment of a High-Pressure Turbine Stage
,”
ASME J. Turbomach.
,
140
(
4
), p.
041001
.
2.
Chen
,
L.-W.
,
Wakelam
,
C.
,
Ong
,
J.
,
Peters
,
A.
,
Milli
,
A.
, and
Michelassi
,
V.
,
2018
, “
Numerical Investigation of the Compressible Flow Through a Turbine Center Frame Duct
,”
Turbo Expo: Power for Land, Sea, and Air
,
Oslo, Norway
, Vol. 50992, American Society of Mechanical Engineers, p. V02AT45A006.
3.
Xia
,
G.
,
Yin
,
Z.
, and
Medic
,
G.
,
2020
, “
Application of SST-Based SLA-DDES Formulation to Turbomachinery Flows
,”
Progress in Hybrid RANS-LES Modelling
,
Berlin, Germany
.
4.
Xia
,
G.
,
Medic
,
G.
, and
Praisner
,
T. J.
,
2018
, “
Hybrid RANS/LES Simulation of Corner Stall in a Linear Compressor Cascade
,”
ASME J. Turbomach.
,
140
(
8
), p.
081004
.
5.
Yin
,
Z.
,
2020
, “
Adaptive Detached Eddy Simulation of End-Wall Flow in a Linear Compressor Cascade
,”
Turbo Expo: Power for Land, Sea, and Air
,
Virtual, Online
, Vol. 84089, American Society of Mechanical Engineers, p. V02CT35A010.
6.
Riéra
,
W.
,
Marty
,
J.
,
Castillon
,
L.
, and
Deck
,
S.
,
2016
, “
Zonal Detached-Eddy Simulation Applied to the Tip-Clearance Flow in an Axial Compressor
,”
AIAA J.
,
54
(
8
), pp.
2377
2391
.
7.
Spalart
,
P. R.
,
Deck
,
S.
,
Shur
,
M. L.
,
Squires
,
K. D.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2006
, “
A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities
,”
Theor. Comput. Fluid Dyn.
,
20
(
3
), p.
181
.
8.
Yin
,
Z.
, and
Durbin
,
P. A.
,
2016
, “
An Adaptive DES Model that Allows Wall-Resolved Eddy Simulation
,”
Int. J. Heat Fluid Flow
,
62
(
Part B
), pp.
499
509
.
9.
Spalart
,
P. R.
,
2009
, “
Detached-Eddy Simulation
,”
Annu. Rev. Fluid Mech.
,
41
, pp.
181
202
.
10.
Reddy
,
K.
,
Ryon
,
J.
, and
Durbin
,
P.
,
2014
, “
A DDES Model With a Smagorinsky-Type Eddy Viscosity Formulation and Log-Layer Mismatch Correction
,”
Int. J. Heat Fluid Flow
,
50
, pp.
103
113
.
11.
Lilly
,
D. K.
,
1991
, “
A Proposed Modification of the Germano Subgrid-Scale Closure Method
,”
Phys. Fluids A
,
4
(
3
), pp.
633
635
.
12.
Yin
,
Z.
,
Ge
,
X.
, and
Durbin
,
P. A.
,
2021
, “
Adaptive Detached Eddy Simulation of Transition Under Influences of Freestream Turbulence and Pressure Gradient
,”
J. Fluid Mech.
,
915
,
p. A115
.
13.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Rodi
,
W.
, and
Durbin
,
P. A.
,
2010
, “
Direct Numerical Simulations of Transition in a Compressor Cascade: The Influence of Free-Stream Turbulence
,”
J. Fluid Mech.
,
665
, pp.
57
98
.
14.
Nagarajan
,
S.
,
Lele
,
S.
, and
Ferziger
,
J.
,
2007
, “
Leading-Edge Effects in Bypass Transition
,”
J. Fluid Mech.
,
572
, pp.
471
504
.
15.
Lardeau
,
S.
,
Leschziner
,
M.
, and
Zaki
,
T.
,
2012
, “
Large Eddy Simulation of Transitional Separated Flow Over a Flat Plate and a Compressor Blade
,”
Flow Turbul. Combust.
,
88
(
1–2
), pp.
19
44
.
16.
Ge
,
X.
,
Arolla
,
S.
, and
Durbin
,
P.
,
2014
, “
A Bypass Transition Model Based on the Intermittency Function
,”
Flow Turbul. Combust.
,
93
(
1
), pp.
37
61
.
17.
Wilcox
,
D. C.
,
1998
,
Turbulence Modeling for CFD
,
DCW Industries
,
La Canada, CA
.
18.
Spalart
,
P. R.
,
1997
, “
Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach
,”
Proceedings of First AFOSR International Conference on DNS/LES
,
Greyden Press
.
19.
Bailly
,
C.
, and
Juve
,
D.
,
1999
, “
A Stochastic Approach to Compute Subsonic Noise Using Linearized Euler’s Equations
,”
5th AIAA/CEAS Aeroacoustics Conference and Exhibit
,
Bellevue, WA
, p.
1872
.
20.
Jasak
,
H.
,
Jemcov
,
A.
, and
Tukovic
,
Z.
,
2007
, “
OpenFOAM: A C++ Library for Complex Physics Simulations
,”
International Workshop on Coupled Methods in Numerical Dynamics
,
IUC, Dubrovnik, Croatia
.
21.
Hilgenfeld
,
L.
, and
Pfitzner
,
M.
,
2004
, “
Unsteady Boundary Layer Development Due to Wake Passing Effects on a Highly Loaded Linear Compressor Cascade
,”
ASME J. Turbomach.
,
126
(
4
), pp.
493
500
.
22.
Yin
,
Z.
,
Reddy
,
K.
, and
Durbin
,
P. A.
,
2015
, “
On the Dynamic Computation of the Model Constant in Delayed Detached Eddy Simulation
,”
Phys. Fluids
,
27
(
2
), p.
025105
.
23.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
,
2012
, “
Development of DDES and IDDES Formulations for the kω Shear Stress Transport Model
,”
Flow Turbul. Combust.
,
88
(
3
), pp.
431
449
.
24.
Durbin
,
P. A.
,
2017
, “
Perspectives on the Phenomenology and Modeling of Boundary Layer Transition
,”
Turbul. Combust.
,
99
(
1
), pp.
1
23
.
25.
Durbin
,
P.
,
1996
, “
On the k–ɛ Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
,
17
, pp.
9
90
.
26.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed.,
DCW Industries
,
La Canada, CA
.
You do not currently have access to this content.