Abstract

Heat transfer measurements in transitional flat plate boundary layers subjected to surface roughness, strong pressure gradients, and freestream turbulence are presented. The surfaces considered consist of a smooth reference and 26 deterministic surface topographies that vary in roughness element aspect ratio, height, and density. They are designed to cover the full range of roughness regimes from smooth over transitionally rough to fully rough. For each surface, two pressure distributions, characteristic for a suction and a pressure side turbine vane, are investigated. Inlet Reynolds numbers range from 3.0 × 105 to 6.0 × 105 and inlet turbulence intensity is varied between 1% and 8%. Furthermore, different turbulence Reynolds numbers, i.e., turbulence length scales, are realized while the incident turbulence intensity is kept constant. Additionally, the turbulence intensity and Reynolds stress distributions in the freestream along the flat plate are measured using x-wire probes. Results show a strong influence of roughness and turbulence intensity on the onset of transition. The new data set is used to develop an improved correlation considering the roughness height, density, and shape as well as the turbulence intensity and turbulent length scales.

References

1.
Tarada
,
F.
, and
Suzuki
,
M.
,
1993
, “
External Heat Transfer Enhancement to Turbine Blading Due to Surface Roughness
,”
Combustion and Fuels; Oil and Gas Applications; Cycle Innovations; Heat Transfer; Electric Power; Industrial and Cogeneration; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation
,
Cincinnati, OH
,
May 24–27
, Vol.
2
,
ASME International Gas Turbine and Aeroengine Congress and Exposition
, p.
V002T08A006
.
2.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,”
ASME J. Turbomach.
,
123
(
4
), pp.
739
748
.
3.
Glasenapp
,
T.
,
Puetz
,
F.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2017
, “
Assessment of Real Turbine Blade Roughness Parameters for the Design of a Film Cooling Test Rig
,”
Volume 5A: Heat Transfer, ASME Turbo Expo: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
, p.
V05AT13A001
.
4.
Mayle
,
R. E.
,
2018
,
Elements of Transitional Boundary-Layer Flow
,
Logos Verlag
,
Berlin
.
5.
von Deyn
,
L. H.
,
Forooghi
,
P.
,
Frohnapfel
,
B.
,
Schlatter
,
P.
,
Hanifi
,
A.
, and
Henningson
,
D. S.
,
2020
, “
Direct Numerical Simulations of Bypass Transition Over Distributed Roughness
,”
AIAA J.
,
58
(
2
), pp.
702
711
.
6.
Reshotko
,
E.
,
1984
, “
Disturbances in a Laminar Boundary Layer Due to Distributed Surface Roughness
,”
Turbulence and Chaotic Phenomena in Fluids
, pp.
39
46
.
7.
Corke
,
T. C.
,
Bar-Sever
,
A.
, and
Morkovin
,
M. V.
,
1986
, “
Experiments on Transition Enhancement by Distributed Roughness
,”
Phys. Fluids
,
29
(
10
), p.
3199
.
8.
Morkovin
,
M. V.
,
1990
, “On Roughness-Induced Transition: Facts, Views, and Speculations,”
Advances in Soil Science
,
Hussaini
,
M. Y.
and
Voigt
,
R. G..
, eds.,
Springer
,
New York, NY
, pp.
281
295
.
9.
Reshotko
,
E.
, and
Tumin
,
A.
,
2004
, “
Role of Transient Growth in Roughness-Induced Transition
,”
AIAA J.
,
42
(
4
), pp.
766
770
.
10.
Downs
,
R. S.
,
White
,
E. B.
, and
Denissen
,
N. A.
,
2008
, “
Transient Growth and Transition Induced by Random Distributed Roughness
,”
AIAA J.
,
46
(
2
), pp.
451
462
.
11.
Roberts
,
S. K.
, and
Yaras
,
M. I.
,
2005
, “
Boundary-Layer Transition Affected by Surface Roughness and Free-Stream Turbulence
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
449
457
.
12.
Stripf
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2005
, “
Surface Roughness Effects on External Heat Transfer of a HP Turbine Vane
,”
ASME J. Turbomach.
,
127
(
1
), pp.
200
208
.
13.
Stripf
,
M.
,
2007
, “
Einfluss der Oberflächenrauigkeit auf die transitionale Grenzschicht an Gasturbinenschaufeln: Experimentelle Untersuchungen und Entwicklung eines Berechnungsverfahrens
,”
Ph.D. thesis
,
Universität Karlsruhe (TH)
,
Karlsruhe
.
14.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2012
, “
Experimental Study of Surface Roughness Effects on a Turbine Airfoil in a Linear Cascade—Part I: External Heat Transfer
,”
ASME J. Turbomach.
,
134
(
4
), p.
041006
.
15.
Lorenz
,
M.
,
Schulz
,
A.
, and
Bauer
,
H.-J.
,
2013
, “
Predicting Rough Wall Heat Transfer and Skin Friction in Transitional Boundary Layers—A New Correlation for Bypass Transition Onset
,”
ASME J. Turbomach.
,
135
(
4
), p.
041021
.
16.
Stripf
,
M.
,
Schulz
,
A.
,
Bauer
,
H.-J.
, and
Wittig
,
S.
,
2009
, “
Extended Models for Transitional Rough Wall Boundary Layers With Heat Transfer—Part I: Model Formulations
,”
ASME J. Turbomach.
,
131
(
3
), p.
031016
.
17.
Boyle
,
R. J.
, and
Stripf
,
M.
,
2009
, “
Simplified Approach to Predicting Rough Surface Transition
,”
ASME J. Turbomach.
,
131
(
4
), p.
041020
.
18.
Albiez
,
H.
,
Gramespacher
,
C.
,
Stripf
,
M.
, and
Bauer
,
H.-J.
,
2020
, “
High-Resolution Measurements of Heat Transfer, Near-Wall Intermittency, and Reynolds-Stresses Along a Flat Plate Boundary Layer Undergoing Bypass Transition
,”
ASME J. Heat Transfer-Trans. ASME
,
142
(
4
), p.
042105
.
19.
Mayle
,
R. E.
, and
Stripf
,
M.
,
2021
, “
I-Spots and Emmons’ Spot Production Rate
,”
ASME J. Turbomach.
,
143
(
9
), p.
091019
.
20.
Gramespacher
,
C.
,
Albiez
,
H.
,
Stripf
,
M.
, and
Bauer
,
H.-J.
,
2021
, “
The Influence of Element Thermal Conductivity, Shape, and Density on Heat Transfer in a Rough Wall Turbulent Boundary Layer With Strong Pressure Gradients
,”
ASME J. Turbomach.
,
143
(
8
), p.
081001
.
21.
Gramespacher
,
C.
,
Albiez
,
H.
,
Stripf
,
M.
, and
Bauer
,
H.-J.
,
2019
, “
The Generation of Grid Turbulence With Continuously Adjustable Intensity and Length Scales
,”
Exp. Fluids
,
60
(
5
), p.
85
.
22.
Waigh
,
D. R.
, and
Kind
,
R. J.
,
1998
, “
Improved Aerodynamic Characterization of Regular Three-Dimensional Roughness
,”
AIAA J.
,
36
(
6
), pp.
1117
1119
.
23.
Gostelow
,
J. P.
,
Melwani
,
N.
, and
Walker
,
G. J.
,
1996
, “
Effects of Streamwise Pressure Gradient on Turbulent Spot Development
,”
ASME J. Turbomach.
,
118
(
4
), pp.
737
743
.
24.
D’Ovidio
,
A.
,
Harkins
,
J. A.
, and
Gostelow
,
J. P.
,
2001
, “
Turbulent Spots in Strong Adverse Pressure Gradients: Part 2—Spot Propagation and Spreading Rates
,”
Volume 3: Heat Transfer; Electric Power; Industrial and Cogeneration, ASME Turbo Expo: Power for Land, Sea and Air
,
New Orleans, LA
,
June 4–7
, p.
V003T01A085
.
25.
Gostelow
,
J. P.
, and
Blunden
,
A. R.
,
1989
, “
Investigations of Boundary Layer Transition in an Adverse Pressure Gradient
,”
ASME J. Turbomach.
,
111
(
4
), pp.
366
374
.
26.
Gostelow
,
J. P.
,
Blunden
,
A. R.
, and
Walker
,
G. J.
,
1994
, “
Effects of Free-Stream Turbulence and Adverse Pressure Gradients on Boundary Layer Transition
,”
ASME J. Turbomach.
,
116
(
3
), pp.
392
404
.
27.
Patankar
,
S. V.
, and
Spalding
,
D. B.
,
1970
,
Heat and Mass Transfer in Boundary Layers
, 2nd ed.,
International Textbook Company Ltd.
,
London
.
28.
Bammert
,
K.
, and
Sandstede
,
H.
,
1980
, “
Measurements of the Boundary Layer Development Along a Turbine Blade With Rough Surfaces
,”
ASME J. Eng. Power
,
102
(
4
), pp.
978
983
.
29.
Gibbings
,
J.
, and
Al-Shukri
,
S.
,
1997
, “
Effect of Sandpaper Roughness and Stream Turbulence on the Laminar Layer and Its Transition
,”
Aeronaut. J.
,
101
(
1001
), pp.
17
24
.
30.
Mayle
,
R. E.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
Volume 5: Manufacturing Materials and Metallurgy; Ceramics; Structures and Dynamics; Controls, Diagnostics and Instrumentation; Education; General, ASME International Gas Turbine and Aeroengine Congress and Exposition
,
Orlando, FL
,
June 3–6
, p.
V005T17A001
.
31.
McClain
,
S. T.
,
Collins
,
S. P.
,
Hodge
,
B. K.
, and
Bons
,
J. P.
,
2006
, “
The Importance of the Mean Elevation in Predicting Skin Friction for Flow Over Closely Packed Surface Roughness
,”
ASME J. Fluids Eng.
,
128
(
3
), pp.
579
586
.
You do not currently have access to this content.