Abstract

Gas turbine blades and vanes are typically manufactured with small clearances between adjacent vane and blade platforms, termed the mid-passage gap. The mid-passage gap reduces turbine efficiency and causes significant additional heat load into the vane platform. This paper presents a new low-order analytical model to quantify the effects of the mid-passage gap on aerodynamics and heat transfer, based only on geometric features and the passage static pressure field. This model is used to calculate losses and heat transfer due to the gap and to derive ideal distributions of purge flow which prevent ingress into the gap. A further simplified estimation method for the effect of gap flow is also presented, so that for any machine the significance of the gap can be quickly assessed based only on geometry and operating conditions. The analysis is validated against both an experimental campaign in a high-speed linear cascade and Reynolds-averaged Navier–Stokes computational fluid dynamics.

References

1.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2007
, “
The Interaction of Turbine Inter-Platform Leakage Flow With the Mainstream Flow
,”
ASME J. Turbomach.
,
129
(
2
), pp.
303
310
.
2.
Reid
,
K.
,
Denton
,
J.
,
Pullan
,
G.
,
Curtis
,
E.
, and
Longley
,
J.
,
2006
, “
Reducing the Performance Penalty Due to Turbine Inter-Platform Gaps
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
,
American Society of Mechanical Engineers
, pp.
799
808
.
3.
Piggush
,
J.
, and
Simon
,
T.
,
2007
, “
Heat Transfer Measurements in a First-Stage Nozzle Cascade Having Endwall Contouring: Misalignment and Leakage Studies
,”
ASME J. Turbomach.
,
129
(
4
), pp.
782
790
.
4.
Piggush
,
J.
, and
Simon
,
T.
,
2013
, “
Flow Measurements in a First Stage Nozzle Cascade Having Endwall Contouring, Leakage, and Assembly Features
,”
ASME J. Turbomach.
,
135
(
1
), p.
011002
.
5.
Hada
,
S.
, and
Thole
,
K. A.
,
2006
, “
Computational Study of a Midpassage Gap and Upstream Slot on Vane Endwall Film-Cooling
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
,
American Society of Mechanical Engineers
, pp.
839
848
.
6.
Cardwell
,
N.
,
Sundaram
,
N.
, and
Thole
,
K.
,
2006
, “
Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling
,”
ASME J. Turbomach.
,
128
(
1
), pp.
62
70
.
7.
Cardwell
,
N.
,
Sundaram
,
N.
, and
Thole
,
K.
,
2007
, “
The Effects of Varying the Combustor-Turbine Gap
,”
ASME J. Turbomach.
,
129
(
4
), pp.
756
764
.
8.
Lynch
,
S.
, and
Thole
,
K.
,
2008
, “
The Effect of Combustor-Turbine Interface Gap Leakage on the Endwall Heat Transfer for a Nozzle Guide Vane
,”
ASME J. Turbomach.
,
130
(
4
), p.
041019
.
9.
Lynch
,
S. P.
, and
Thole
,
K. A.
,
2011
, “
The Effect of the Combustor-Turbine Slot and Midpassage Gap on Vane Endwall Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041002
.
10.
Lange
,
E.
,
Lynch
,
S.
, and
Lewis
,
S.
,
2016
, “
Computational and Experimental Studies of Midpassage Gap Leakage and Misalignment for a Non-Axisymmetric Contoured Turbine Blade Endwall
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
,
American Society of Mechanical Engineers
, p.
V05AT13A001
.
11.
Liu
,
H.
,
Hu
,
C.
,
Shen
,
X.
,
Zhu
,
X.
,
Yang
,
H.
, and
Du
,
Z.
,
2018
, “
The Aerodynamic Optimization Design of Turbine Cascade Nonaxisymmetric Endwall and the Midgap Influence Assessment
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
,
232
(
15
), pp.
2760
2774
.
12.
Chowdhury
,
N. H.
,
Shiau
,
C.-C.
,
Han
,
J.-C.
,
Zhang
,
L.
, and
Moon
,
H.-K.
,
2017
, “
Turbine Vane Endwall Film Cooling With Slashface Leakage and Discrete Hole Configuration
,”
ASME J. Turbomach.
,
139
(
6
), p.
061003
.
13.
Roy
,
A.
,
Jain
,
S.
,
Ekkad
,
S. V.
,
Ng
,
W.
,
Lohaus
,
A. S.
,
Crawford
,
M. E.
, and
Abraham
,
S.
,
2017
, “
Heat Transfer Performance of a Transonic Turbine Blade Passage in the Presence of Leakage Flow Through Upstream Slot and Mateface Gap With Endwall Contouring
,”
ASME J. Turbomach.
,
139
(
12
), p.
121006
.
14.
Luque
,
S.
,
Kanjirakkad
,
V.
,
Aslanidou
,
I.
,
Lubbock
,
R.
,
Rosic
,
B.
, and
Uchida
,
S.
,
2015
, “
A New Experimental Facility to Investigate Combustor–Turbine Interactions in Gas Turbines With Multiple Can Combustors
,”
ASME J. Eng. Gas Turbines Power
,
137
(
5
), p.
051503
.
15.
Roach
,
P.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grids
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.
16.
Collins
,
M.
,
Chana
,
K.
, and
Povey
,
T.
,
2015
, “
New Technique for the Fabrication of Miniature Thin Film Heat Flux Gauges
,”
Meas. Sci. Technol.
,
26
(
2
), p.
025303
.
17.
Oldfield
,
M.
,
2008
, “
Impulse Response Processing of Transient Heat Transfer Gauge Signals
,”
ASME J. Turbomach.
,
130
(
2
), p.
021023
.
18.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition
,
Cincinnati, OH
,
May 24–27
,
American Society of Mechanical Engineers
, p.
V002T14A001
.
19.
Winterton
,
R. H.
,
1998
, “
Where Did the Dittus and Boelter Equation Come From?
,”
Int. J. Heat Mass Transfer
,
41
(
4–5
), pp.
809
810
.
You do not currently have access to this content.