Abstract

Blades manufactured through flank and point milling will likely exhibit geometric variability. Gauging the aerodynamic repercussions of such variability, prior to manufacturing a component, is challenging enough, let alone trying to predict what the amplified impact of any in-service degradation will be. While rules of thumb that govern the tolerance band can be devised based on expected boundary layer characteristics at known regions and levels of degradation, it remains a challenge to translate these insights into quantitative bounds for manufacturing. In this work, we tackle this challenge by leveraging ideas from dimension reduction to construct low-dimensional representations of aerodynamic performance metrics. These low-dimensional models can identify a subspace which contains designs that are invariant in performance—the inactive subspace. By sampling within this subspace, we design techniques for drafting manufacturing tolerances and for quantifying whether a scanned component should be used or scrapped. We introduce the blade envelope as a computational manufacturing guide for a blade that is also amenable to qualitative visualizations. In this paper, the first of two parts, we discuss its underlying concept and detail its computational methodology, assuming one is interested only in the single objective of ensuring that the loss of all manufactured blades remains constant. To demonstrate the utility of our ideas, we devise a series of computational experiments with the Von Karman Institute’s LS89 turbine blade.

References

1.
Goodhand
,
M. N.
,
Miller
,
R. J.
, and
Lung
,
H. W.
,
2014
, “
The Impact of Geometric Variation on Compressor Two-Dimensional Incidence Range
,”
ASME J. Turbomach.
,
137
(
2
), p.
021007
.
2.
Garzón
,
V. E.
, and
Darmofal
,
D. L.
,
2003
, “
Impact of Geometric Variability on Axial Compressor Performance
,”
ASME J. Turbomach.
,
125
(
4
), pp.
692
703
.
3.
Seshadri
,
P.
,
Shahpar
,
S.
,
Constantine
,
P.
,
Parks
,
G.
, and
Adams
,
M.
,
2018
, “
Turbomachinery Active Subspace Performance Maps
,”
ASME J. Turbomach.
,
140
(
4
), p.
041003
.
4.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2012
, “
The Impact of Real Geometries on Three-Dimensional Separations in Compressors
,”
ASME J. Turbomach.
,
134
(
2
), p.
021007
.
5.
Bradshaw
,
S.
, and
Waitz
,
I.
,
2009
, “
Impact of Manufacturing Variability on Combustor Liner Durability
,”
ASME J. Eng. Gas Turbines Power
,
131
(
3
), p.
032503
.
6.
Duffner
,
J. D.
,
2008
, “
The Effects of Manufacturing Variability on Turbine Vane Performance
,” Master’s thesis,
Aerospace Computational Design Laboratory, Department of Aeronautics & Astronautics, Massachusetts Institute of Technology
,
Cambridge, MA
.
7.
Fathi
,
A.
, and
Alizadeh
,
M.
,
2012
, “
Effects of Blade Manufacturing Deviations on Turbine Performance
,”
ASME 2012 Gas Turbine India Conference
,
Mumbai, India
, American Society of Mechanical Engineers, pp.
203
211
.
8.
Wang
,
X.
, and
Zou
,
Z.
,
2019
, “
Uncertainty Analysis of Impact of Geometric Variations on Turbine Blade Performance
,”
Energy
,
176
, pp.
67
80
.
9.
Shi
,
W.
,
Chen
,
P.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2019
, “
Uncertainty Quantification of the Effects of Small Manufacturing Deviations on Film Cooling: A Fan-Shaped Hole
,”
Aerospace
,
6
(
4
), p.
46
.
10.
Kamenik
,
J.
,
Voutchkov
,
I.
,
Toal
,
D. J. J.
,
Keane
,
A. J.
,
Högner
,
L.
,
Meyer
,
M.
, and
Bates
,
R.
,
2018
, “
Robust Turbine Blade Optimization in the Face of Real Geometric Variations
,”
J. Propul. Power
,
34
(
6
), pp.
1479
1493
.
11.
Seshadri
,
P.
,
Shahpar
,
S.
, and
Parks
,
G. T.
,
2014
, “
Robust Compressor Blades for Desensitizing Operational Tip Clearance Variations
,”
ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 2A: Turbomachinery
,
Düsseldorf, Germany
,
June
, p. V02AT37A043.
12.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
, and
Johann
,
E.
,
2012
, “
Principal Component Analysis on 3D Scanned Compressor Blades for Probabilistic CFD Simulation
,”
53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
,
Apr
.
13.
Dow
,
E.
, and
Wang
,
Q.
,
2013
, “
Output Based Dimensionality Reduction of Geometric Variability in Compressor Blades
,”
51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
,
Grapevine (Dallas/Ft. Worth Region), TX
,
Jan
.
14.
Lobato
,
H. M. P.
,
Gower
,
I. R.
,
Powell
,
C. A.
, and
Orchard
,
N. B.
,
2014
, “
United States Patent: 8718975—Surface Profile Evaluation
,”
May
.
15.
Wong
,
C. Y.
,
Seshadri
,
P.
,
Scillitoe
,
A.
,
Ubald
,
B. N.
,
Duncan
,
A.
, and
Parks
,
G.
,
2020
, “
Blade Envelopes Part II: Multiple Objectives and Inverse Design
,”
ASME J. Turbomach.
16.
Arts
,
T.
, and
de Rouvroit
,
M. L.
,
1992
, “
Aero-thermal Performance of a Two-Dimensional Highly Loaded Transonic Turbine Nozzle Guide Vane: A Test Case for Inviscid and Viscous Flow Computations
,”
ASME J. Turbomach.
,
114
(
1
), pp.
147
154
.
17.
Economon
,
T. D.
,
Palacios
,
F.
,
Copeland
,
S. R.
,
Lukaczyk
,
T. W.
, and
Alonso
,
J. J.
,
2016
, “
SU2: An Open-Source Suite for Multiphysics Simulation and Design
,”
AIAA J.
,
54
(
3
), pp.
828
846
.
18.
Vitale
,
S.
,
Gori
,
G.
,
Pini
,
M.
,
Guardone
,
A.
,
Economon
,
T. D.
,
Palacios
,
F.
,
Alonso
,
J. J.
, and
Colonna
,
P.
,
2015
, “
Extension of the SU2 Open Source CFD Code to the Simulation of Turbulent Flows of Fluids Modelled With Complex Thermophysical Laws
,”
22nd AIAA Computational Fluid Dynamics Conference
,
Dallas, TX
,
June
.
19.
Samarov
,
A. M.
,
1993
, “
Exploring Regression Structure Using Nonparametric Functional Estimation
,”
J. Am. Stat. Assoc.
,
88
(
423
), pp.
836
847
.
20.
Constantine
,
P. G.
,
2015
,
Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
21.
Seshadri
,
P.
,
Narayan
,
A.
, and
Mahadevan
,
S.
,
2017
, “
Effectively Subsampled Quadratures for Least Squares Polynomial Approximations
,”
SIAM/ASA J. Uncertain. Quant.
,
5
(
1
), pp.
1003
1023
.
22.
Bryan
,
K.
, and
Leise
,
T.
,
2013
, “
Making Do With Less: An Introduction to Compressed Sensing
,”
SIAM Rev.
,
55
(
3
), pp.
547
566
.
23.
Peng
,
J.
,
Hampton
,
J.
, and
Doostan
,
A.
,
2014
, “
A Weighted ℓ1-Minimization Approach for Sparse Polynomial Chaos Expansions
,”
J. Comput. Phys.
,
267
, pp.
92
111
.
24.
Smith
,
R. L.
,
1996
, “
The Hit-and-Run Sampler: A Globally Reaching Markov Chain Sampler for Generating Arbitrary Multivariate Distributions
,”
Proceedings of the 28th Winter Conference on Simulation, WSC’96
,
Coronado, CA
,
December
, IEEE Computer Society, pp.
260
264
.
25.
Constantine
,
P.
,
Howard
,
R.
,
Glaws
,
A.
,
Grey
,
Z.
,
Diaz
,
P.
, and
Fletcher
,
L.
,
2016
, “
Python Active-subspaces Utility Library
,”
J. Open Source Softw.
,
1
(
5
), p.
79
.
26.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge
.
27.
Seshadri
,
P.
, and
Parks
,
G.
,
2017
, “
Effective-Quadratures (EQ): Polynomials for Computational Engineering Studies
,”
J. Open Source Softw.
,
2
(
11
), p.
166
.
You do not currently have access to this content.