Abstract

The inside-out ceramic turbine (ICT), a novel microturbine rotor architecture, has an air-cooled ring, which keeps its composite rotating structural shroud within operating temperature. The cooling ring must achieve a significant radial temperature gradient with a minimal amount of cooling. The cooling ring is made through additive manufacturing, which opens the design space to tailored cooling geometries. Additively manufactured pin fin heat transfer enhancers are explored in this study to assess whether they hold any significant performance benefit over current rectangular cross section open channels. Experimental friction factors and Nusselt numbers were determined for small, densely-packed pin fins over an asymmetrical thermal load. Results indicate that pressure loss is similar to what can be expected for additively manufactured pin fins, whereas heat transfer is lower due to the extremely tight streamwise pin spacing, in both in-line and staggered pin configurations. A design study presented in this article suggests that pin fins are beneficial to an ICT for reducing cooling mass flowrate up to 40%, against an increase in cooling ring mass of roughly 50%.

References

1.
Picard
,
B.
,
Picard
,
M.
,
Plante
,
J.-S.
, and
Rancourt
,
D.
,
2020
, “
Optimum Sub-Megawatt Electric-Hybrid Power Source Selection
,”
Aircr. Eng. Aerosp. Technol.
,
92
(
5
), pp.
717
726
.
2.
Landry
,
C.
,
Dubois
,
P. K.
,
Courtois
,
N.
,
Charron
,
F.
,
Picard
,
M.
, and
Plante
,
J.-S.
,
2016
, “
Development of an Inside-Out Ceramic Turbine
,”
Proc. ASME GT2016
,
Seoul, South Korea
,
June 13–17
, ASME Paper No. GT2016-57041
.
3.
Thibault
,
D.
,
Dubois
,
P. K.
,
Picard
,
B.
,
Landry-Blais
,
A.
,
Plante
,
J.-S.
, and
Picard
,
M.
,
2020
, “
Experimental Assessment of a Sliding-Blade Inside-Out Ceramic Turbine
,”
ASME J. Eng. Gas Turbines Power
,
143
(
5
), p.
051010
.
4.
Han
,
J.-C.
, and
Dutta
,
S.
,
2001
, “
Recent Developments in Turbine Blade Internal Cooling
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
162
178
.
5.
Ferster
,
K. K.
,
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2018
, “
Effects of Geometry, Spacing, and Number of Pin Fins in Additively Manufactured Microchannel Pin Fin Arrays
,”
ASME J. Turbomach.
,
140
(
1
), p.
011007
.
6.
Kim
,
T.
,
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Hodson
,
H. P.
,
2004
, “
Convective Heat Dissipation With Lattice-Frame Materials
,”
Mech. Mater.
,
36
(
8
), pp.
767
780
.
7.
Dumas
,
M.
,
Terriault
,
P.
, and
Brailovski
,
V.
,
2017
, “
Modelling and Characterization of a Porosity Graded Lattice Structure for Additively Manufactured Biomaterials
,”
Mater. Des.
,
121
, pp.
383
392
.
8.
Parent-Simard
,
T.
,
Landry-Blais
,
A.
,
Dubois
,
P. K.
,
Picard
,
M.
, and
Brailovski
,
V.
,
2019
, “
Effect of Surface Roughness Induced by Laser Powder Bed Fusion Additive Manufacturing in a Mini-Channel Heat Exchanger
,”
Proc. ASME GT2019
,
Phoenix, AZ
,
June 17–21
,
ASME Paper No. GT2019-90978
.
9.
Courtois
,
N.
,
Ebacher
,
F.
,
Dubois
,
P. K.
,
Kochrad
,
N.
,
Landry
,
C.
,
Charette
,
M.
,
Landry-Blais
,
A.
,
Fréchette
,
L.
,
Plante
,
J.-S.
, and
Picard
,
M.
,
2017
, “
Superalloy Cooling System for the Composite Rim of an Inside-Out Ceramic Turbine
,”
Proc. ASME GT2017
,
Charlotte, NC
,
June 26–30
,
ASME Paper No. GT2017-64007
.
10.
Zadpoor
,
A. A.
, and
Hedayati
,
R.
,
2016
, “
Analytical Relationships for Prediction of the Mechanical Properties of Additively Manufactured Porous Biomaterials
,”
J. Biomed. Mater. Res. A
,
104
(
12
), pp.
3164
3174
.
11.
Zadpoor
,
A. A.
,
2017
, “
Mechanics of Additively Manufactured Biomaterials
,”
J. Mech. Behav. Biomed. Mater.
,
70
, pp.
1
6
.
12.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2017
, “
Pressure Loss and Heat Transfer Performance for Additively and Conventionally Manufactured Pin Fin Arrays
,”
Int. J. Heat Mass Transfer
,
108
(
Part B
), pp.
2502
2513
.
13.
Cormier
,
Y.
,
Dupuis
,
P.
,
Farjam
,
A.
,
Corbeil
,
A.
, and
Jodoin
,
B.
,
2014
, “
Additive Manufacturing of Pyramidal Pin Fins: Height and Fin Density Effects Under Forced Convection
,”
Int. J. Heat Mass Transfer
,
75
, pp.
235
244
.
14.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.
15.
Chyu
,
M. K.
,
1990
, “
Heat Transfer and Pressure Drop for Short Pin-Fin Arrays With Pin-Endwall Fillet
,”
J. Heat Transfer
,
112
(
4
), pp.
926
932
.
16.
Armstrong
,
J.
, and
Winstanley
,
D.
,
1988
, “
A Review of Staggered Array Pin Fin Heat Transfer for Turbine Cooling Applications
,”
ASME J. Turbomach.
,
110
(
1
), pp.
94
103
.
17.
Shapiro
,
A. H.
,
1953
,
The Dynamics and Thermodynamics of Compressible Fluid Flow
, Vol.
1
,
Wiley
,
New York, NY
.
18.
Maranzana
,
G.
,
Perry
,
I.
, and
Maillet
,
D.
,
2004
, “
Mini- and Micro-Channels: Influence of Axial Conduction in the Walls
,”
Int. J. Heat Mass Transfer
,
47
(
17–18
), pp.
3993
4004
.
19.
Iwaki
,
C.
,
Cheong
,
K. H.
,
Monji
,
H.
, and
Matsui
,
G.
,
2004
, “
PIV Measurement of the Vertical Cross-Flow Structure Over Tube Bundles
,”
Exp. Fluids
,
37
(
3
), pp.
350
363
.
20.
Ostanek
,
J. K.
, and
Thole
,
K. A.
,
2012
, “
Flowfield Measurements in a Single Row of Low Aspect Ratio Pin Fins
,”
ASME J. Turbomach.
,
134
(
5
), p.
051034
.
21.
Lawson
,
S. A.
,
Thrift
,
A. A.
,
Thole
,
K. A.
, and
Kohli
,
A.
,
2011
, “
Heat Transfer From Multiple Row Arrays of Low Aspect Ratio Pin Fins
,”
Int. J. Heat Mass Transfer
,
54
(
17
), pp.
4099
4109
.
You do not currently have access to this content.