Abstract

Stereo-PIV data are used for investigating the effect of axial casing groove (ACG) geometry on the distribution, evolution, and production rates of turbulent kinetic energy (TKE) and Reynolds stresses near a rotor tip. The ACGs delay the onset of stall by entraining the tip leakage vortex (TLV) and cause periodic changes to incidence angle. These effects are decoupled using semicircular, U-shaped, and S-shaped grooves that have similar inlets, but different outflow directions. Most TKE distribution trends can be explained by the local turbulence production rates, elucidating the different mechanisms involved and providing a unique database for turbulence modeling. Interaction of the tip flow with the ACGs modifies the highly anisotropic and inhomogeneous passage turbulence. In all cases, the TKE is high in the TLV center and shear layer connecting the TLV to the rotor tip. At prestall flowrate, TLV entrainment reduces the passage turbulence level, but introduces elevated turbulence in the corner vortex formed at the downstream corner of grooves, and in shear layers developing at the exit from grooves. The location of peaks and the dominant components vary among grooves. Near the best efficiency point, interactions of the TLV with the circumferentially negative outflow from the U and semicircular ACGs generate high turbulence levels, which extend deep into the passage. In contrast, interactions with S grooves are limited, resulting in a substantially lower turbulence level. Accordingly, the S groove maintains the untreated endwall efficiency, while the U and semicircular grooves reduce the peak efficiency.

References

1.
Lakshminarayana
,
B.
,
1986
, “
Turbulence Modeling for Complex Shear Flows
,”
AIAA J.
,
24
(
12
), pp.
1900
1917
.
2.
Lakshminarayana
,
B.
,
1991
, “
An Assessment of Computational Fluid Dynamic Techniques in the Analysis and Design of Turbomachinery—The 1990 Freeman Scholar Lecture
,”
ASME J. Fluids Eng.
,
113
(
3
), pp.
315
352
.
3.
Bradshaw
,
P.
,
1996
, “
Turbulence Modeling With Application to Turbomachinery
,”
Prog. Aerosp. Sci.
,
32
(
6
), pp.
575
624
.
4.
Tucker
,
P. G.
,
2013
, “
Trends in Turbomachinery Turbulence Treatments
,”
Prog. Aerosp. Sci.
,
63
, pp.
1
32
.
5.
Lakshminarayana
,
B.
,
Davino
,
R.
, and
Pouagare
,
M.
,
1982
, “
Three-Dimensional Flow Field in the Tip Region of a Compressor Rotor Passage—Part II: Turbulence Properties
,”
J. Eng. Power
,
104
(
4
), pp.
772
781
.
6.
Liu
,
Y.
,
Yu
,
X.
, and
Liu
,
B.
,
2008
, “
Turbulence Models Assessment for Large-Scale Tip Vortices in an Axial Compressor Rotor
,”
J. Propuls. Power
,
24
(
1
), pp.
15
25
.
7.
Durbin
,
P. A.
,
1996
, “
On the k-3 Stagnation Point Anomaly
,”
Int. J. Heat Fluid Flow
,
17
(
1
), pp.
89
90
.
8.
Moore
,
J. G.
, and
Moore
,
J.
,
1999
, “
Realizability in Turbulence Modelling for Turbomachinery CFD
,”
Aircraft Engine; Marine; Turbomachinery; Microturbines and Small Turbomachinery
,
Indianapolis, IN
,
June 7–10
.
9.
Li
,
Y.
,
Chen
,
H.
, and
Katz
,
J.
,
2017
, “
Measurements and Characterization of Turbulence in the Tip Region of an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
139
(
12
), p.
121003
.
10.
Li
,
Y.
,
Chen
,
H.
, and
Katz
,
J.
,
2019
, “
Challenges in Modeling of Turbulence in the Tip Region of Axial Turbomachines
,”
J. Ship Res.
,
63
(
1
), pp.
56
68
.
11.
Chen
,
H.
,
Li
,
Y.
,
Koley
,
S. S.
, and
Katz
,
J.
,
2021
, “
Effects of Axial Casing Grooves on the Structure of Turbulence in the Tip Region of an Axial Turbomachine Rotor
,”
ASME J. Turbomach.
,
143
(
9
), p.
091009
.
12.
Hah
,
C.
,
Voges
,
M.
,
Mueller
,
M.
, and
Schiffer
,
H. P.
,
2010
, “
Characteristics of Tip Clearance Flow Instability in a Transonic Compressor
,”
Proceedings of Turbo Expo: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, pp.
63
74
.
13.
Hah
,
C.
,
Hathaway
,
M.
, and
Katz
,
J.
,
2014
, “
Investigation of Unsteady Flow Field in a Low-Speed One and a Half Stage Axial Compressor: Effects of Tip Gap Size on the Tip Clearance Flow Structure at Near Stall Operation
,”
Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air
,
Dusseldorf, Germany
,
June 16–20
, p. V02DT44A040.
14.
Denton
,
J. D.
,
2010
, “
Some Limitations of Turbomachinery CFD
,”
Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air
,
Glasgow, UK
,
June 14–18
, Vol. 7, pp.
735
745
.
15.
Horlock
,
J. H.
, and
Denton
,
J. D.
,
2005
, “
A Review of Some Early Design Practice Using Computational Fluid Dynamics and a Current Perspective
,”
ASME J. Turbomach.
,
127
(
1
), pp.
5
13
.
16.
Wu
,
H.
,
Tan
,
D.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2011
, “
Three-Dimensional Flow Structures and Associated Turbulence in the Tip Region of a Waterjet Pump Rotor Blade
,”
Exp. Fluids
,
51
(
6
), pp.
1721
1737
.
17.
Wu
,
H.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2010
, “
Analysis of Turbulence in the Tip Region of a Waterjet Pump Rotor
,”
ASME 2010 Third Joint US-European Fluids Engineering Summer Meeting, Symposia—Parts A, B, and C
,
Montreal, Quebec, Canada
,
Aug. 1–5
, Vol. 1, pp.
699
711
.
18.
Li
,
Y.
,
Chen
,
H.
,
Tan
,
D.
, and
Katz
,
J.
,
2019
, “
On the Effects of Tip Clearance and Operating Condition on the Flow Structures Within an Axial Turbomachine Rotor Passage
,”
ASME J. Turbomach.
,
141
(
11
), p. 111002.
19.
Chow
,
Y. C.
,
Uzol
,
O.
,
Katz
,
J.
, and
Meneveau
,
C.
,
2005
, “
Decomposition of the Spatially Filtered and Ensemble Averaged Kinetic Energy, the Associated Fluxes and Scaling Trends in a Rotor Wake
,”
Phys. Fluids
,
17
(
8
), p.
085102
.
20.
Moore
,
R. D.
,
Kovich
,
G.
, and
Blade
,
R. J.
,
1971
,
Effect of Casing Treatment on Overall and Blade Element Performance of a Compressor Rotor
, NASATechnical Note, Report No. TN D-6538.
21.
Osborn
,
W. M.
,
Lewis
,
G. W. J.
, and
Heidelberg
,
L. J.
,
1971
,
Effect of Several Porous Casing Treatments on Stall Limit and on Overall Performance of an Axial-Flow Compressor Rotor
, NASA Technical Note, Report No. TN D-6537.
22.
Takata
,
H.
, and
Tsukuda
,
Y.
,
1977
, “
Stall Margin Improvement by Casing Treatment—Its Mechanism and Effectiveness
,”
J. Eng. Power
,
99
(
1
), pp.
121
133
.
23.
Smith
,
G. D. J.
, and
Cumpsty
,
N. A.
,
1984
, “
Flow Phenomena in Compressor Casing Treatment
,”
ASME J. Eng. Gas Turbines Power
,
106
(
3
), pp.
532
541
.
24.
Brandstetter
,
C.
,
Kegalj
,
M.
,
Wartzek
,
F.
,
Heinichen
,
F.
, and
Schiffer
,
H.-P.
,
2014
, “
Stereo PIV Measurement of Flow Structures Underneath an Axial-Slot Casing Treatment on a One and a Half Stage Transonic Compressor
,”
17th International Symposium on Applications of Laser Techniques to Fluid Mechanics
,
Lisbon, Portugal
,
July 7–10
, pp.
1
18
.
25.
Crook
,
A. J.
,
Greitzer
,
E. M.
,
Tan
,
C. S.
, and
Adamczyk
,
J. J.
,
1993
, “
Numerical Simulation of Compressor Endwall and Casing Treatment Flow Phenomena
,”
ASME J. Turbomach.
,
115
(
3
), pp.
501
512
.
26.
Fujita
,
H.
, and
Takata
,
H.
,
1984
, “
A Study on Configurations of Casing Treatment for Axial Flow Compressors
,”
Bull. JSME
,
27
(
230
), pp.
1675
1681
.
27.
Chen
,
H.
,
Li
,
Y.
,
Koley
,
S. S.
,
Doeller
,
N.
, and
Katz
,
J.
,
2017
, “
An Experimental Study of Stall Suppression and Associated Changes to the Flow Structures in the Tip Region of an Axial Low Speed Fan Rotor by Axial Casing Grooves
,”
ASME J. Turbomach.
,
139
(
12
), p.
121010
.
28.
Chen
,
H.
,
Li
,
Y.
, and
Katz
,
J.
,
2018
, “
On the Interactions of a Rotor Blade Tip Flow With Axial Casing Grooves in an Axial Compressor Near the Best Efficiency Point
,”
ASME J. Turbomach.
,
141
(
1
), p.
011008
.
29.
Müller
,
M. W.
,
Schiffer
,
H. P.
,
Voges
,
M.
, and
Hah
,
C.
,
2011
, “
Investigation of Passage Flow Features in a Transonic Compressor Rotor With Casing Treatments
,”
Proceedings of Turbo Expo: Power for Land, Sea, and Air
,
Vancouver, British Columbia, Canada
,
June 6–10
, Vol. 54679, pp.
65
75
.
30.
Chen
,
H.
,
Li
,
Y.
,
Tan
,
D.
, and
Katz
,
J.
,
2017
, “
Visualizations of Flow Structures in the Rotor Passage of an Axial Compressor at the Onset of Stall
,”
ASME J. Turbomach.
,
139
(
4
), p.
041008
.
31.
Chen
,
H.
,
Koley
,
S. S.
,
Li
,
Y.
, and
Katz
,
J.
,
2019
, “
Systematic Experimental Evaluations Aimed at Optimizing the Geometry of Axial Casing Groove in a Compressor
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
32.
Koley
,
S. S.
,
Chen
,
H.
,
Saraswat
,
A.
, and
Katz
,
J.
,
2021
, “
Effect of Axial Casing Groove Geometry on Rotor-Groove Interactions in the Tip Region of a Compressor
,”
ASME J. Turbomach.
,
143
(
9
), p.
091010
.
33.
Tan
,
D.
,
Li
,
Y.
,
Wilkes
,
I.
,
Miorini
,
R. L.
, and
Katz
,
J.
,
2015
, “
Visualization and Time-Resolved Particle Image Velocimetry Measurements of the Flow in the Tip Region of a Subsonic Compressor Rotor
,”
ASME J. Turbomach.
,
137
(
4
), p.
041007
.
34.
Miorini
,
R. L.
,
Wu
,
H.
, and
Katz
,
J.
,
2012
, “
The Internal Structure of the Tip Leakage Vortex Within the Rotor of an Axial Waterjet Pump
,”
ASME J. Turbomach.
,
134
(
3
), p.
031018
.
35.
Hah
,
C.
,
2017
, “
Effects of Double-Leakage Tip Clearance Flow on the Performance of a Compressor Stage With a Large Rotor Tip Gap
,”
ASME J. Turbomach.
,
139
(
6
).
36.
Lumley
,
J. L.
,
1979
, “
Computational Modeling of Turbulent Flows
,”
Adv. Appl. Mech.
,
18
, pp.
123
176
.
37.
Simonsen
,
A. J.
, and
Krogstad
,
P. Å.
,
2005
, “
Turbulent Stress Invariant Analysis: Clarification of Existing Terminology
,”
Phys. Fluids
,
17
(
8
), p.
088103
.
38.
Banerjee
,
S.
,
Krahl
,
R.
,
Durst
,
F.
, and
Zenger
,
C.
,
2007
, “
Presentation of Anisotropy Properties of Turbulence, Invariants Versus Eigenvalue Approaches
,”
J. Turbul.
,
8
(
N32
).
39.
Emory
,
M.
, and
Iaccarino
,
G.
,
2014
, “
Visualizing Turbulence Anisotropy in the Spatial Domain With Componentality Contours
,”
Cent. Turbul. Res. Annu. Res. Briefs
, pp.
123
138
.
You do not currently have access to this content.