Abstract

Data assimilation (DA) integrating limited experimental data and computational fluid dynamics is applied to improve the prediction accuracy of flow and mixing behavior in inclined jet-in-crossflow (JICF). The ensemble Kalman filter (EnKF) approach is used as the DA technique, and the Reynolds-averaged Navier–Stokes (RANS) modeling serves as the prediction framework. The flow field and scalar mixing characteristics of a cylinder-inclined JICF and a sand dune (SD)-inspired inclined JICF are studied at various velocity ratios (VR = 0.4, 0.8, and 1.2). First, the Spalart–Allmaras (SA) model and the standard k-ɛ model are investigated based on the cylinder configuration at VR = 1.2. An optimized set of model constants are determined for each model using the EnKF-based data assimilation. The SA model shows remarkable improvement and better prediction in flow separation than the standard k-ɛ model after DA. Further exploration demonstrates that this set of the SA model constants can be extended to other VRs and even the SD-inspired configuration, mainly due to the correction of the predicted flow separation in inclined JICF. Finally, an investigation of the concentration field also shows satisfying improvement, resulting from a more appropriate turbulent Schmidt number. The optimized model constants, the revealed extensibility, and the uncovered mechanism of using the EnKF-based DA to improve the simulation of JICF could facilitate the design of related applications such as gas turbine film cooling.

References

1.
Mahesh
,
K.
,
2013
, “
The Interaction of Jets With Crossflow
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
379
407
.
2.
Ryan
,
K. J.
,
Bodart
,
J.
,
Folkersma
,
M.
,
Elkins
,
C. J.
, and
Eaton
,
J. K.
,
2017
, “
Turbulent Scalar Mixing in a Skewed Jet in Crossflow: Experiments and Modeling
,”
Flow, Turbul. Combust.
,
98
(
3
), pp.
781
801
.
3.
Zhou
,
W.
,
Chen
,
H.
,
Liu
,
Y.
,
Wen
,
X.
, and
Peng
,
D.
,
2018
, “
Unsteady Analysis of Adiabatic Film Cooling Effectiveness for Discrete Hole With Oscillating Mainstream Flow
,”
Phys. Fluids.
,
30
(
12
), p.
127103
.
4.
Muppidi
,
S.
, and
Mahesh
,
K.
,
2005
, “
Study of Trajectories of Jets in Crossflow Using Direct Numerical Simulations
,”
J. Fluid Mech.
,
530
, pp.
81
100
.
5.
Muppidi
,
S.
, and
Mahest
,
K.
,
2005
, “
Direct Numerical Simulation of Turbulent Jets in Crossflow
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 10–13
, pp.
4213
4228
.
6.
Muldoon
,
F.
, and
Acharya
,
S.
,
2009
, “
DNS Study of Pulsed Film Cooling for Enhanced Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
52
(
13–14
), pp.
3118
3127
.
7.
Muldoon
,
F.
, and
Acharya
,
S.
,
2010
, “
Direct Numerical Simulation of Pulsed Jets-in-Crossflow
,”
Comput. Fluids
,
39
(
10
), pp.
1745
1773
.
8.
Wu
,
Z.
,
Laurence
,
D.
, and
Afgan
,
I.
,
2017
, “
Direct Numerical Simulation of a Low Momentum Round Jet in Channel Crossflow
,”
Nucl. Eng. Des.
,
313
, pp.
273
284
.
9.
Fu
,
W. S.
,
Chao
,
W. S.
,
Tsubokura
,
M.
,
Li
,
C. G.
, and
Wang
,
W. H.
,
2018
, “
Direct Numerical Simulation of Film Cooling With a Fan-Shaped Hole Under Low Reynolds Number Conditions
,”
Int. J. Heat Mass Transfer
,
123
, pp.
544
560
.
10.
Guo
,
X.
,
Schröder
,
W.
, and
Meinke
,
M.
,
2006
, “
Large-Eddy Simulations of Film Cooling Flows
,”
Comput. Fluids
,
35
(
6
), pp.
587
606
.
11.
Bidan
,
G.
,
Vézier
,
C.
, and
Nikitopoulos
,
D. E.
,
2012
, “
Study of Unforced and Modulated Film-Cooling Jets Using Proper Orthogonal Decomposition—Part I: Unforced Jets
,”
ASME J. Turbomach.
,
135
(
2
), p.
021037
.
12.
Sakai
,
E.
,
Takahashi
,
T.
, and
Watanabe
,
H.
,
2014
, “
Large-Eddy Simulation of an Inclined Round Jet Issuing Into a Crossflow
,”
Int. J. Heat Mass Transfer
,
69
, pp.
300
311
.
13.
Kalghatgi
,
P.
, and
Acharya
,
S.
,
2014
, “
Modal Analysis of Inclined Film Cooling Jet Flow
,”
ASME J. Turbomach.
,
136
(
8
), p.
081007
.
14.
Blocken
,
B.
,
2018
, “
LES Over RANS in Building Simulation for Outdoor and Indoor Applications: A Foregone Conclusion?
,”
Build. Simul.
,
11
(
5
), pp.
821
870
.
15.
Wang
,
Q.
,
Moosania
,
M.
, and
Zhou
,
C.
,
2022
, “
Effects of an Incoming Vortex on the Film Cooling Jet
,”
Int. J. Heat Mass Transfer
,
185
, p.
122323
.
16.
Silieti
,
M.
,
Divo
,
E.
, and
Kassab
,
A. J.
,
2004
, “
Numerical Investigation of Adiabatic and Conjugate Film Cooling Effectiveness on a Single Cylindrical Film-Cooling Hole
,”
Proceedings of IMECE04
,
Anaheim, CA
,
Nov. 13–20
, pp.
333
343
.
17.
Hassan
,
J. S.
, and
Yavuzkurt
,
S.
,
2006
, “
Comparison of Four Different Two-Equation Models of Turbulence in Predicting Film Cooling Performance
,”
ASME Turbo Expo
,
Barcelona, Spain
,
May 8–11
, pp.
1
10
.
18.
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2006
, “
Gas Turbine Film Cooling
,”
J. Propul. Power.
,
22
(
2
), pp.
249
270
.
19.
Yepuri
,
G. B.
,
Talanki Puttarangasetty
,
A. B.
,
Kolke
,
D. K.
, and
Jesuraj
,
F.
,
2018
, “
Effect of RANS-Type Turbulence Models on Adiabatic Film Cooling Effectiveness Over a Scaled Up Gas Turbine Blade Leading Edge Surface
,”
J. Inst. Eng. Ser. C
,
99
(
4
), pp.
393
400
.
20.
He
,
C.
,
Liu
,
Y.
, and
Gan
,
L.
,
2018
, “
A Data Assimilation Model for Turbulent Flows Using Continuous Adjoint Formulation
,”
Phys. Fluids.
,
30
(
10
), p.
105108
.
21.
Li
,
S.
,
Zhan
,
J.
,
Gong
,
Y.
, and
Hu
,
W.
,
2015
, “
Numerical Investigation of Film Cooling Using RANS and LES
,”
Procedia Eng.
,
126
, pp.
701
705
.
22.
Jones
,
F. B.
,
Fox
,
D. W.
, and
Bogard
,
D. G.
,
2019
, “
Evaluating the Usefulness of RANS in Film Cooling
,”
ASME Turbo Expo 2019
,
Phoenix, AZ
,
June 17–21
, pp.
1
12
.
23.
Anderson
,
J. L.
,
2001
, “
An Ensemble Adjustment Kalman Filter for Data Assimilation
,”
Mon. Weather Rev.
,
129
(
12
), pp.
2884
2903
.
24.
Gao
,
X.
,
Wang
,
Y.
,
Overton
,
N.
,
Zupanski
,
M.
, and
Tu
,
X.
,
2017
, “
Data-Assimilated Computational Fluid Dynamics Modeling of Convection-Diffusion-Reaction Problems
,”
J. Comput. Sci.
,
21
, pp.
38
59
.
25.
Wang
,
Y.
,
Walters
,
S.
,
Overton-Katz
,
N.
,
Guzik
,
S.
, and
Gao
,
X.
,
2020
, “
CFD Modeling of Bluff-Body Stabilized Premixed Flames With Data Assimilation
,”
AIAA Scitech 2020 Forum. 1 Part F
,
Orlando, FL
,
Jan. 6–10
, pp.
1
13
.
26.
Wang
,
Y.
,
Guzik
,
S.
,
Zupanski
,
M.
, and
Gao
,
X.
,
2021
, “
The Maximum Likelihood Ensemble Filter for Computational Flame and Fluid Dynamics
,”
IMA J. Appl. Math.
,
86
(
4
), pp.
631
661
.
27.
Wang
,
Y.
,
2022
, “
Bayesian Data Assimilation for CFD Modeling of Turbulent Combustion
,” Ph.D. Thesis,
Department of Mechanical Engineering, Colorado State University
,
Fort Collins, CO
28.
Foures
,
D. P. G.
,
Dovetta
,
N.
,
Sipp
,
D.
, and
Schmid
,
P. J.
,
2014
, “
A Data-Assimilation Method for Reynolds-Averaged Navier-Stokes-Driven Mean Flow Reconstruction
,”
J. Fluid Mech.
,
759
, pp.
404
431
.
29.
Symon
,
S.
,
Dovetta
,
N.
,
McKeon
,
B. J.
,
Sipp
,
D.
, and
Schmid
,
P. J.
,
2017
, “
Data Assimilation of Mean Velocity From 2D PIV Measurements of Flow Over an Idealized Airfoil
,”
Exp. Fluids.
,
58
(
5
), pp.
1
17
.
30.
Symon
,
S.
,
Sipp
,
D.
,
Schmid
,
P. J.
, and
McKeon
,
B. J.
,
2020
, “
Mean and Unsteady Flow Reconstruction Using Data-Assimilation and Resolvent Analysis
,”
AIAA J.
,
58
(
2
), pp.
575
588
.
31.
He
,
C.
,
Wang
,
P.
, and
Liu
,
Y.
,
2021
, “
Data Assimilation for Turbulent Mean Flow and Scalar Fields With Anisotropic Formulation
,”
Exp. Fluids.
,
62
(
5
), pp.
1
25
.
32.
Xiao
,
H.
,
Wu
,
J. L.
,
Wang
,
J. X.
,
Sun
,
R.
, and
Roy
,
C. J.
,
2016
, “
Quantifying and Reducing Model-Form Uncertainties in Reynolds-Averaged Navier–Stokes Simulations: A Data-Driven, Physics-Informed Bayesian Approach
,”
J. Comput. Phys.
,
324
, pp.
115
136
.
33.
Oliver
,
T. A.
, and
Moser
,
R. D.
,
2011
, “
Bayesian Uncertainty Quantification Applied to RANS Turbulence Models
,”
J. Phys. Conf. Ser.
,
318
(
4
), p.
042032
.
34.
Singh
,
A. P.
, and
Duraisamy
,
K.
,
2016
, “
Using Field Inversion to Quantify Functional Errors in Turbulence Closures
,”
Phys. Fluids.
,
28
(
4
), p.
045110
.
35.
He
,
C.
,
Liu
,
Y.
,
Gan
,
L.
, and
Lesshafft
,
L.
,
2019
, “
Data Assimilation and Resolvent Analysis of Turbulent Flow Behind a Wall-Proximity rib
,”
Phys. Fluids.
,
31
(
2
), p.
025118
.
36.
Li
,
Z.
,
Zhang
,
H.
,
Bailey
,
S. C. C.
,
Hoagg
,
J. B.
, and
Martin
,
A.
,
2017
, “
A Data-Driven Adaptive Reynolds-Averaged Navier–Stokes k–ω Model for Turbulent Flow
,”
J. Comput. Phys.
,
345
, pp.
111
131
.
37.
Kato
,
H.
, and
Obayashi
,
S.
,
2012
, “
Statistical Approach for Determining Parameters of a Turbulence Model
,”
2012 15th International Conference on Information Fusion
,
Singapore
,
July 9–12
, pp.
2452
2457
.
38.
Deng
,
Z.
,
He
,
C.
,
Wen
,
X.
, and
Liu
,
Y.
,
2018
, “
Recovering Turbulent Flow Field From Local Quantity Measurement: Turbulence Modeling Using Ensemble-Kalman-Filter-Based Data Assimilation
,”
J. Vis.
,
21
(
6
), pp.
1043
1063
.
39.
Zhou
,
W.
, and
Hu
,
H.
,
2017
, “
A Novel Sand-Dune-Inspired Design for Improved Film Cooling Performance
,”
Int. J. Heat Mass Transfer
,
110
, pp.
908
920
.
40.
Zhou
,
W.
,
Zhang
,
X.
,
He
,
C.
,
Wen
,
X.
,
Zhao
,
J.
, and
Liu
,
Y.
,
2021
, “
Simultaneous Measurements of Time-Resolved Velocity and Concentration Fields Behind a Sand Dune-Inspired Jet in Crossflow
,”
Phys. Fluids.
,
33
(
11
), p.
115101
.
41.
Zhang
,
X.
,
Wang
,
K.
,
Wen
,
X.
,
He
,
C.
,
Liu
,
Y.
, and
Zhou
,
W.
,
2022
, “
Experimental Study of Time-Resolved Simultaneous Velocity and Concentration Fields of an Inclined Jet in Crossflow
,”
Int. J. Heat Mass Transfer
,
188
, p.
122622
.
42.
Baek
,
S. I.
, and
Yavuzkurt
,
S..
,
2018
, “
Effects of Oscillations in the Main Flow on Film Cooling at Various Frequencies at a Low Blowing Ratio
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,
Oslo, Norway
,
June 11–15
.
43.
Bourgoin
,
A.
,
El Kadi Abderrezzak
,
K.
,
Benhamadouche
,
S.
, and
Ata
,
R.
,
2021
, “
An Adoption of the Spalart–Allmaras Turbulence Model for Two- and Three-Dimensional Free Surface Environmental Flows
,”
J. Hydraul. Res.
,
59
(
2
), pp.
314
328
.
44.
Liu
,
C. L.
,
Zhu
,
H. R.
, and
Bai
,
J. T.
,
2008
, “
Effect of Turbulent Prandtl Number on the Computation of Film-Cooling Effectiveness
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6208
6218
.
45.
Gendron
,
P. O.
,
Avaltroni
,
F.
, and
Wilkinson
,
K. J.
,
2008
, “
Diffusion Coefficients of Several Rhodamine Derivatives as Determined by Pulsed Field Gradient-Nuclear Magnetic Resonance and Fluorescence Correlation Spectroscopy
,”
J. Fluoresc.
,
18
(
6
), pp.
1093
1101
.
46.
Evensen
,
G.
,
2003
, “
The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation
,”
Ocean Dyn.
,
53
(
4
), pp.
343
367
.
47.
Evensen
,
G.
,
1994
, “
Sequential Data Assimilation With a Nonlinear Quasi-Geostrophic Model Using Monte Carlo Methods to Forecast Error Statistics
,”
J. Geophys. Res.
,
99
(
C5
), p.
10143
.
48.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
2000
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
42
(
1
), pp.
55
61
.
49.
Zhang
,
X. L.
,
Su
,
G. F.
,
Yuan
,
H. Y.
,
Chen
,
J. G.
, and
Huang
,
Q. Y.
,
2014
, “
Modified Ensemble Kalman Filter for Nuclear Accident Atmospheric Dispersion: Prediction Improved and Source Estimated
,”
J. Hazard. Mater.
,
280
, pp.
143
155
.
50.
Lorentzen
,
R. J.
,
2011
, “
An Iterative Ensemble Kalman Filter
,”
IEEE Trans. Autom. Control
,
56
(
8
), pp.
1990
1995
.
51.
Spalart
,
P. R.
, and
Allmaras
,
S. R.
,
1992
, “
A One-Equation Turbulence Model for Aerodynamic Flows
,”
AIAA 1992-439. 30th Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 6–9
.
52.
Yusuf
,
S. N. A.
,
Asako
,
Y.
,
Sidik
,
N. A. C.
,
Mohamed
,
S. B.
, and
Japar
,
W. M. A. A.
,
2020
, “
A Short Review on RANS Turbulence Models
,”
CFD Lett.
,
12
(
11
), pp.
83
96
.
53.
Launder
,
B. E.
, and
Spalding
,
D. B.
,
1974
, “
The Numerical Computation of Turbulent Flows
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
2
), pp.
269
289
.
54.
Yu
,
F.
,
2020
, “
Improvements to Turbulence Models for Better Simulations of Film Cooling Flow Field and Heat Transfer
,” Ph.D. Thesis,
The Pennsylvania State University
,
State College, PA
, https://etda.libraries.psu.edu/files/final_submissions/21032
55.
Su
,
L. K.
, and
Mungal
,
M. G.
,
2004
, “
Simultaneous Measurements of Scalar and Velocity Field Evolution in Turbulent Crossflowing Jets
,”
J. Fluid Mech.
,
513
, pp.
1
45
.
56.
Milani
,
P. M.
,
Ling
,
J.
, and
Eaton
,
J. K.
,
2020
, “
Turbulent Scalar Flux in Inclined Jets in Crossflow: Counter Gradient Transport and Deep Learning Modelling
,”
J. Fluid Mech.
,
906
, p.
A27
.
You do not currently have access to this content.