Abstract

In axial compressors, shrouded stator cavity flows are responsible for performance degradation due to their interaction with the power stream. The present paper aims at exploring the possibility of employing a single-stage high-pressure axial compressor as a test vehicle for cavity flows investigations. In a first step, the robustness of the adopted RANS approach is tested against experimental data on the closed-cavity baseline configuration (i.e., no downstream-to-upstream recirculation). In a second phase, the effect of different hub cavities layouts of different levels of realism is numerically investigated. The focus is set on the representativeness of a closed cavity configuration with injection. The cavity flow topology and impact on the overall performance are considered in the analysis. At its final extent, this paper provides numerical and experimental guidelines for the robust assessment of cavity flows topology and performance effects.

References

1.
Swoboda
,
M.
,
Ivey
,
P. C.
,
Wenger
,
U.
, and
Gümmer
,
V.
,
1998
, “
An Experimental Examination of Cantilevered and Shrouded Stators in a Multistage Axial Compressor
,”
ASME Turbo Expo 98-GT-282
,
Stockholm
.
2.
Yoon
,
S.
,
Selmeier
,
R.
,
Cargill
,
P.
, and
Wood
,
P.
,
2014
, “
Effect of the Stator Hub Configuration and Stage Design Parameters on Aerodynamic Loss in Axial Compressors
,”
ASME Turbo Expo GT2014-26095
,
Düsseldorf, Germany
.
3.
Childs
,
R. N.
,
2014
, “
Seals
,”
Mechanical Design Engineering Handbook—Chapter 14
,
Butterworth-Heinemann
, pp.
565
624
.
4.
Wellborn
,
S. R.
,
2001
, “
Details of Axial Compressor Shrouded Stator Cavity Flows
,”
ASME Turbo Expo 2001-GT-0495
,
New Orleans
.
5.
Demargne
,
A. A. J.
, and
Longley
,
J. P.
,
2000
, “
The Aerodynamic Interaction of Stator Shroud Leakage and Mainstream Flows in Compressors
,”
ASME Turbo Expo 2000-GT-570
,
Munich
, Germany.
6.
Flores Galindo
,
D. R.
,
2018
, “
Influence of Labyrinth Seals in Cavities on the Flow of an Axial Compressor
,”
Institut für Turbomaschinen und Fluid-Dynamik
,
Hannover
.
7.
Wellborn
,
S. R.
, and
Okiishi
,
T. H.
,
1996
, “
Effects of Shrouded Stator Cavity Flows on Multistage Axial Compressors Aerodynamic Performance
,”
NASA CR 135391
.
8.
Mahmood
,
S. M. H.
, and
Turner
,
M. G.
,
2017
, “
Modeling Capability for Cavity Flows in an Axial Compressor
,”
ASME Turbo Expo GT2017-64040
,
Charlotte
, NC.
9.
Heidegger
,
N. J.
,
Hall
,
E. J.
, and
Delaney
,
R. A.
,
1996
, “
Stator Seal Cavity Flow Investigation
,”
NASA CR 198504
.
10.
Wellborn
,
S. R.
, and
Okiishi
,
T. H.
,
1998
, “
The Influence of Shrouded Stator Cavity Flows on Multistage Compressor Performance
,”
ASME Paper 98-GT-12
,
Stockholm
.
11.
Sohn
,
D. W.
,
Kim
,
T.
, and
Song
,
S. J.
,
2006
, “
Influence of the Leakage Tangential Velocity on the Loss Generation and Leakage Flow Kinematics in Shrouded Axial Compressor Cascades
,”
ASME Turbo Expo GT2006-90979
,
Barcelona
, Spain.
12.
Ozturk
,
H. K.
,
Childs
,
P. R. N.
,
Turner
,
A. B.
,
Hannis
,
J. M.
, and
Turner
,
J. R.
,
1998
, “
A Three Dimensional Computational Study of Windage Heating Within an Axial Compressor Stator Well
,”
ASME Paper 98-GT-119
,
Stockholm
.
13.
Kato
,
D.
,
Yamagami
,
M.
,
Tsuchiya
,
N.
, and
Kodama
,
H.
,
2011
, “
The Influence of Shrouded Stator Cavity Flows on the Aerodynamic Performance of a High Speed Multistage Axial Flow Compressor
,”
ASME Turbo Expo GT2011-46300
,
Vancouver, Canada
.
14.
Ligrani
,
P. M.
,
Singer
,
B. A.
, and
Baun
,
L. R.
,
1989
, “
Spatial Resolution and Downwash Velocity Corrections for Multiple-Hole Pressure Probes in Complex Flows
,”
Experiments Fluids
,
7
(
6
), pp.
424
426
.
15.
Fontaneto
,
F.
, and
Lahalle
,
A.
, 2016, “
Highly Reliable Aerodynamic Calibration for Ground and Flight Testing Total Temperature Probes
,”
XXIII Biannual Symposium on Measuring Techniques in Turbomachinery Transonic and Supersonic Flow in Cascades and Turbomachines
,
Stuttgart
,
Germany, September
.
16.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
17.
Bardina
,
J. E.
,
Huang
,
P. G.
, and
Coakley
,
T. J.
,
1997
, “
Turbulence Modeling Validation, Testing, and Development
,”
NASA Technical Memorandum
, p.
110446
.
18.
Roache
,
P. J.
,
1994
, “
Perspective: A Method for Uniform Reporting of Grid Refinement Studies
,”
ASME J. Fluid. Eng.
,
116
(
3
), pp.
405
413
.
19.
Roache
,
P. J.
,
1997
,
Quantification of Uncertainty in Computational Fluid Dynamics
,
Annual Review of Fluid Mechanics
.
20.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretisation in CFD Applications
,”
ASME J. Fluid. Eng.
,
130
(
7
), p.
078001
.
21.
Taylor
,
J. V.
, and
Miller
,
R. J.
,
2017
, “
Competing Three-Dimensional Mechanisms in Compressor Flows
,”
ASME J. Turbomach.
,
139
(
2
), p.
021009
.
22.
Lei
,
V.-M.
,
Spakovsky
,
Z. S.
, and
Greitzer
,
E. M.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), p.
031006
.
You do not currently have access to this content.