Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Additive manufacturing (AM) has emerged as a method to prototype novel designs for turbine airfoil cooling with complex internal and film cooling geometries. Creating engine scale features with AM comes with challenges that impact flow and heat transfer, which consequently affect the overall performance of the component. While AM has proven to be faster and more cost-effective than traditional casting methods, the scalability of AM requires further investigation. The purpose of this study was to integrate various film-cooling hole geometries identified through large-scale models and true-scale simple coupons into a true-scale turbine vane to assess overall cooling effectiveness. The National Experimental Turbine (NExT) vane was additively manufactured with a singular cooling passage feeding two rows of film-cooling holes: a row of baseline 7-7-7 holes; and a row of holes containing both parametrically optimized 15-15-1 holes and modified adjoint optimized cross flow holes. The internal passage was designed to have a section with ribs and a section without ribs to assess how internal features impact the cooling holes' performance. The vane was tested in the Steady Thermal Aero Research Turbine (START) rig over a range of film cooling blowing ratios. A combination of computed tomography scanning and non-contact infrared thermal imaging measurements were used to evaluate how as-built geometries impacted the overall cooling effectiveness on the NExT vane for each hole group. The 15-15-1 film-cooling holes with no internal ribs were shown to be the most effective in lowering surface temperatures relative to the other cooling hole configurations. Also, the 15-15-1 holes with no internal ribs to affect the cooling flow entrance to the hole were the least affected by blowing ratio changes. The 7-7-7 hole was found to have a negative impact on the vane because the downstream surface was warmed by a separating internal channel wall.

References

1.
The White House
,
2021
, “
The Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050
,” p.
10
.
2.
Thole
,
K. A.
, and
Fishbone
,
S.
,
2023
, “
Additive Manufacturing Benefits and Challenges in Developing Turbine Technologies
,”
Global Gas Turbine News
,
62
(
3
). p.
60
.
3.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2022
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME J. Turbomach.
,
144
(
12
), p.
121003
.
4.
Jones
,
F. B.
,
Fox
,
D. W.
,
Oliver
,
T.
, and
Bogard
,
D. G.
,
2021
, “
Parametric Optimization of Film Cooling Hole Geometry
,” Paper No. GT2021-59326.
5.
Jones
,
F. B.
,
Oliver
,
T.
, and
Bogard
,
D. G.
,
2021
, “
Adjoint Optimization of Film Cooling Hole Geometry
,” Paper No. GT2021-59332.
6.
Yoon
,
C.
,
Flachs
,
E. M.
,
Ellinger
,
M. E.
, and
Bogard
,
D. G.
,
2024
, “
Overall Cooling Effectiveness With Internal Serpentine Channels and Optimized Film Cooling Holes
,”
ASME J. Turbomach.
,
146
(
9
), p.
091002
.
7.
Horner
,
M. J.
,
Yoon
,
C.
,
Furgeson
,
M.
,
Oliver
,
T. A.
, and
Bogard
,
D. G.
,
2022
, “
Experimental and Computational Investigation of Integrated Internal and Film Cooling Designs Incorporating a Thermal Barrier Coating
,”
ASME J. Turbomach.
,
144
(
9
), p.
091001
.
8.
Veley
,
E. M.
,
Thole
,
K. A.
, and
Bogard
,
D. G.
,
2024
, “
The Effects of Channel Supplies on Overall Film-Cooling Effectiveness
,”
ASME J. Turbomach.
,
146
(
3
), p.
031006
.
9.
Veley
,
E. M.
,
Thole
,
K. A.
,
Furgeson
,
M. T.
, and
Bogard
,
D. G.
,
2023
, “
Printability and Overall Cooling Performance of Additively Manufactured Holes With Inlet and Exit Rounding
,”
ASME J. Turbomach.
,
145
(
3
), p.
031017
.
10.
Furgeson
,
M. T.
,
Veley
,
E. M.
,
Yoon
,
C.
,
Gutierrez
,
D.
,
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2022
, “
Development and Evaluation of Shaped Film Cooling Holes Designed for Additive Manufacturing
,” Paper No. GT2022-83201.
11.
Gutierrez
,
D.
,
Yoon
,
C.
,
Furgeson
,
M.
,
Veley
,
E. M.
,
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2024
, “
Evaluation of Adjoint Optimized Holes—Part I Baseline Performance
,”
ASME J. Turbomach.
,
146
(
11
), p.
111010
.
12.
Yoon
,
C.
,
Gutierrez
,
D.
,
Furgeson
,
M. T.
, and
Bogard
,
D. G.
,
2022
, “
Evaluation of Adjoint Optimized Hole—Part II: Parameter Effects on Performance
,” Paper No. GT2022-82726.
13.
Cecconi
,
M.
, and
Giovannetti
,
I.
,
2023
, “
Development of Additive Manufacturing Gas Turbine Hot Gas Path Vanes at Baker Hughes
,” Paper No. GT2023-103043.
14.
Thole
,
K. A.
,
Barringer
,
M. D.
,
Berdanier
,
R. A.
,
Fishbone
,
S.
,
Wagner
,
J. H.
,
Dennis
,
R.
,
Black
,
J.
, et al
,
2021
, “
Defining a Testbed for the U.S. Turbine Industry: The National Experimental Turbine (NExT)
,” AIAA-2021-3489.
15.
Barringer
,
M.
,
Coward
,
A.
,
Clark
,
K.
, and
Thole
,
K. A.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,” Paper No. GT2014-25570.
16.
Berdanier
,
R. A.
,
Monge-Concepción
,
I.
,
Knisely
,
B. F.
,
Barringer
,
M. D.
,
Thole
,
K. A.
, and
Grover
,
E. A.
,
2019
, “
Scaling Sealing Effectiveness in a Stator-Rotor Cavity for Differing Blade Spans
,”
ASME J. Turbomach.
,
141
(
5
), p.
051007
.
17.
McCormack
,
K. E.
,
Rozman
,
M.
,
Berdanier
,
R. A.
, and
Thole
,
K. A.
,
2024
, “
Geometric and Flow Characterization of Additively Manufactured Turbine Blades With Drilled Film Cooling Holes
,” Paper No. GT2024-122559.
18.
Knisely
,
B. F.
,
Berdanier
,
R. A.
,
Wagner
,
J. H.
,
Thole
,
K. A.
,
Arisi
,
A. N.
, and
Haldeman
,
C. W.
,
2023
, “
Effects of Part-to-Part Flow Variations on Overall Effectiveness and Life of Rotating Turbine Blades
,”
ASME J. Turbomach.
,
145
(
6
), p.
061016
.
19.
Mori
,
M.
,
Novak
,
L.
,
Sekavčnik
,
M.
, and
Kuštrin
,
I.
,
2008
, “
Application of IR Thermography as a Measuring Method to Study Heat Transfer on Rotating Surface
,”
Forschung im Ingenieurwes
,
72
(
1
), pp.
1
10
.
20.
McCormack
,
K. E.
,
Gailey
,
N. L.
,
Berdanier
,
R. A.
,
Barringer
,
M. D.
, and
Thole
,
K. A.
,
2024
, “
Quantifying Part-to-Part Flow Variations and Cooling Effectiveness in Engine-Run Blades
,”
ASME J. Turbomach.
,
146
(
1
), p.
011002
.
21.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
22.
Wright
,
L. M.
,
Fu
,
W. L.
, and
Han
,
J. C.
,
2004
, “
Thermal Performance of Angled, V-Shaped, and W-Shaped Rib Turbulators in Rotating Rectagular Cooling Channels (AR = 4:1)
,”
ASME J. Turbomach.
,
126
(
4
), pp.
604
614
.
23.
Alkhamis
,
N.
,
Rallabandi
,
A.
, and
Han
,
J. C.
,
2011
, “
Heat Transfer and Pressure Drop Correlations for Square Channels With V-Shaped Ribs at High Reynolds Numbers
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
11
), p.
111901
.
24.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
25.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Sanders
,
P.
, and
Wang
,
L.
,
2021
, “
Impact of Additive Manufacturing on Internal Cooling Channels With Varying Diameters and Build Directions
,”
ASME J. Turbomach.
,
143
(
7
), p.
071003
.
26.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Performance of Public Film Cooling Geometries Produced Through Additive Manufacturing
,”
ASME J. Turbomach.
,
142
(
5
), p.
051009
.
27.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
549
556
.
28.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2006
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side Due to Surface Roughness
,”
ASME J. Turbomach.
,
128
(
3
), pp.
547
554
.
29.
Bons
,
J. P.
,
Taylor
,
R. P.
,
McClain
,
S. T.
, and
Rivir
,
R. B.
,
2001
, “
The Many Faces of Turbine Surface Roughness
,” Paper No. GT2001-0163.
30.
McClintic
,
J. W.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dyson
,
T. E.
, and
Webster
,
Z. D.
,
2018
, “
Effect of Internal Crossflow Velocity on Film Cooling Effectiveness—Part I: Axial Shaped Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011003
.
31.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2003
, “
Effect of Internal Coolant Crossflow on the Effectiveness of Shaped Film-Cooling Holes
,”
ASME J. Turbomach.
,
125
(
3
), pp.
547
554
.
32.
Furgeson
,
M. T.
,
Veley
,
E. M.
,
Yoon
,
C.
,
Gutierrez
,
D.
,
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2022
, “
Development and Evaluation of Shaped Film Cooling Holes Designed for Additive Manufacturing
,” Paper No. GT2022-83201.
33.
Veley
,
E. M.
,
2023
, “
Evaluation of Additively Manufactured Internal Cooling Channels and Film Cooling Holes for Cooling Effectiveness
,”
Ph.D. Dissertation
,
Mechanical Engineering, The Pennsylvania State University
,
University Park, PA
.
You do not currently have access to this content.