Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The entropy generation within a turbulent, collateral boundary layer is well understood and is characterized by a dissipation coefficient, Cd. However, it is common for the transverse pressure gradients in turbomachines to create highly skewed boundary layers, where the velocity varies in direction as well as magnitude. A combined experimental and high-fidelity computational approach is used to quantify the effect of skew on the dissipation coefficient for the first time. At a nominal condition of 14 deg of skew and Reθ of 1000, the increase in dissipation coefficient is 20% as determined from direct numerical simulation and 28% from experimental measurements, relative to the collateral boundary layer. Experimental data over a range of skew angles and Reθ values show that Cd increases approximately linearly with skew so that, at a skew of 25, loss is 70% greater than in the collateral boundary layer. The implications for loss estimation are examined by evaluating boundary layer loss, in the Harrison turbine cascade, with and without the influence of skew on Cd. By accounting for the skew in the boundary layer, a new proposed model has been used to calculate the loss coefficient in the Harrison cascade within 4% of the experimentally measured value.

References

1.
Denton
,
J.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Denton
,
J.
, and
Cumpsty
,
N.
,
1987
, “Loss Mechanisms in Turbomachines, Imeche Paper, No. C260/87.”
3.
Flack
,
K.
, and
Johnston
,
J.
,
1998
, “
Near-Wall Flow in a Three-dimensional Boundary Layer on the Endwall of a 30 Bend
,”
Exp. Fluids
,
24
(
2
), pp.
175
184
.
4.
Degani
,
A. T.
,
Smith
,
F. T.
, and
Walker
,
J. D. A.
,
1993
, “
The Structure of a Three-dimensional Turbulent Boundary Layer
,”
J. Fluid Mech.
,
250
, pp.
43
68
.
5.
Langston
,
L.
,
1980
, “
Crossflows in a Turbine Cascade Passage
,”
ASME J. Eng. Gas Turbines Power.
,
102
(
4
), pp.
866
874
.
6.
Lynch
,
S.
,
2017
, “
Three-Dimensional Boundary Layer in a Turbine Blade Passage
,”
J. Propul. Power
,
33
(
4
), pp.
954
963
.
7.
Zhao
,
Y.
, and
Sandberg
,
R. D.
,
2021
, “
High-Fidelity Simulations of a High-Pressure Turbine Vane With End Walls: Impact of Secondary Structures and Spanwise Temperature Profiles on Losses
,”
ASME Turbo Expo.
,
Online, virtual
,
June 7–11
.
8.
Folk
,
M.
,
Miller
,
R. J.
, and
Coull
,
J. D.
,
2020
, “
The Impact of Combustor Turbulence on Turbine Loss Mechanisms
,”
ASME J. Turbomach.
,
142
(
9
), p.
091009
.
9.
Schwarz
,
W. R.
, and
Bradshaw
,
P.
,
1994
, “
Turbulence Structural Changes for a Three-Dimensional Turbulent Boundary Layer in a 30 Bend
,”
J. Fluid Mech.
,
272
, pp.
183
210
.
10.
Talluru
,
K.
,
Kulandaivelu
,
V.
,
Hutchins
,
N.
, and
Marusic
,
I.
,
2014
, “
A Calibration Technique to Correct Sensor Drift Issues in Hot-Wire Anemometry
,”
Meas. Sci. Technol.
,
25
(
10
), p.
105304
.
11.
Cox
,
R.N.
,
1957
,
“‌Wall Neighbourhood Measurements in Turbulent Boundary Layers Using a Hot Wire Anemometer”‌, Aeronautical Research Council, Report No. 19101.
.
12.
Wheeler
,
A. P.
,
Dickens
,
A. M.
, and
Miller
,
R. J.
,
2018
, “
The Effect of Nonequilibrium Boundary Layers on Compressor Performance
,”
ASME J. Turbomach.
,
140
(
10
), p.
101003
.
13.
Wheeler
,
A. P.
,
2023
, “
Desktop-DNS: An Open Toolkit for Turbomachinery Aerodynamics
,”
ASME Turbo Expo.
,
Boston, MA
,
June 26–30
.
14.
Tam
,
C. K.
, and
Webb
,
J. C.
,
1993
, “
Dispersion-Relation-Preserving Finite Difference Schemes for Computational Acoustics
,”
J. Comput. Phys.
,
107
(
2
), pp.
262
281
.
15.
Zaki
,
T. A.
,
Wissink
,
J. G.
,
Rodi
,
W.
, and
Durbin
,
P. A.
,
2010
, “
Direct Numerical Simulations of Transition in a Compressor Cascade: The Influence of Free-Stream Turbulence
,”
J. Fluid Mech.
,
665
, pp.
57
98
.
16.
Przytarski
,
P. J.
, and
Wheeler
,
A. P.
,
2021
, “
Accurate Prediction of Loss Using High Fidelity Methods
,”
ASME J. Turbomach.
,
143
(
3
), p.
031008
.
17.
Maynard
,
J. M.
,
Wheeler
,
A. P.
,
Taylor
,
J. V.
, and
Wells
,
R.
,
2023
, “
Unsteady Structure of Compressor Tip Leakage Flows
,”
ASME J. Turbomach.
,
145
(
5
), p.
051005
.
18.
Schlatter
,
P.
, and
Örlü
,
R.
,
2010
, “
Assessment of Direct Numerical Simulation Data of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
659
, pp.
116
126
.
19.
Schlichting
,
H.
,
1968
,
Boundary Layer Theory
, 6th ed.,
McGraw-Hill
,
New York
.
20.
Harrison
,
S.
,
1990
, “
Secondary Loss Generation in a Linear Cascade of High-Turning Turbine Blades
,”
ASME J. Turbomach.
,
112
(
4
), pp.
618
624
.
21.
Robinson
,
S. K.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
601
639
.
22.
Sreenivasan
,
K. R.
,
1989
,
The Turbulent Boundary Layer
,
Springer
,
Berlin, Heidelberg
, pp.
159
209
.
23.
Johnston
,
J.
, and
Flack
,
K.
,
1996
, “
Advances in Three-Dimensional Turbulent Boundary Layers With Emphasis on the Wall-Layer Regions
,”
ASME J. Fluids Eng.
,
118
(
2
), pp.
219
232
.
24.
Eaton
,
J. K.
,
1995
, “
Effects of Mean Flow Three Dimensionality on Turbulent Boundary-layer Structure
,”
AIAA J.
,
33
(
11
), pp.
2020
2025
.
25.
Flack
,
K. A.
,
1997
, “
Near-Wall Structure of Three-Dimensional Turbulent Boundary Layers
,”
Exp. Fluids
,
23
(
4
), pp.
335
340
.
26.
Flack
,
K. A.
,
1993
,
Near-Wall Investigation of Three-Dimensional Turbulent Boundary Layers
,
Stanford University
.
27.
Mathis
,
R.
,
Hutchins
,
N.
, and
Marusic
,
I.
,
2009
, “
Large-Scale Amplitude Modulation of the Small-Scale Structures in Turbulent Boundary Layers
,”
J. Fluid Mech.
,
628
, pp.
311
337
.
28.
Hutchins
,
N.
, and
Marusic
,
I.
,
2007
, “
Large-Scale Influences in Near-Wall Turbulence
,”
Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci.
,
365
(
1852
), pp.
647
664
.
29.
Compton
,
D. A.
, and
Eaton
,
J. K.
,
1997
, “
Near-Wall Measurements in a Three-Dimensional Turbulent Boundary Layer
,”
J. Fluid Mech.
,
350
, pp.
189
208
.
30.
Langtry
,
R.
, and
Menter
,
F.
,
2005
, “
Transition Modeling for General CFD Applications in Aeronautics
,”
43rd AIAA Aerospace Sciences Meeting and Exhibit
,
Reno, NV
,
Jan. 10–13
, p.
522
.
31.
Denton
,
J.
, and
Pullan
,
G.
,
2012
, “
A Numerical Investigation Into the Sources of Endwall Loss in Axial Flow Turbines
,”
ASME Turbo Expo: Power for Land, Sea, and Air, Vol. 44748
,
Copenhagen, Denmark
,
June 11–15
, American Society of Mechanical Engineers, pp.
1417
1430
.
32.
Cebeci
,
T.
,
2004
,
Analysis of Turbulent Flows
, 2nd rev. and expanded ed.,
Elsevier
,
Amsterdam, Boston
.
33.
Brandvik
,
T.
, and
Pullan
,
G.
,
2011
, “
An Accelerated 3D Navier—Stokes Solver for Flows in Turbomachines
,”
ASME J. Turbomach.
,
133
(
2
), p. 021025.
You do not currently have access to this content.