Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

As gas turbine engine designs continue to target higher turbine entry temperatures for increased thermal efficiency, gas turbine manufacturers and operators require additional feedback from life-limited engine components. Moreover, additively manufactured (AM) hardware is becoming more prevalent in the engine development cycle to reduce component lead times and associated costs. Although additive manufacturing unlocks unique capabilities for sensor integration, the inherent roughness from additive surfaces poses unique challenges to the direct-write sensor installation processes. The current study addresses these realities by demonstrating sensor operation on additively manufactured vane hardware in a turbine research facility operating at scaled conditions. Thin-film thermocouples were deposited on fully-cooled AM turbine vanes and tested over a range of operating conditions in a one-stage research turbine at Penn State University. The low-profile surface-mounted sensors were compared with traditional small-diameter embedded thermocouples in terms of calibration accuracy and durability. A comparison between traditional masked thermal spray and direct-write installation was also evaluated as part of the sensor integration strategy for the AM vanes. Ultimately, this study shows that thin-film thermocouples on additively manufactured airfoils can operate reliably over an extended test campaign in rig-scaled conditions. Furthermore, the measurement accuracy of thin-film thermocouples demonstrated through this study is equivalent to traditional mineral-insulated thermocouple sensors showing the utility of these technologies for future turbine research and development applications.

References

1.
Fu
,
W.
,
Haberland
,
F.
,
Klapdor
,
E. V.
,
Rule
,
D.
, and
Piegert
,
S.
,
2018
, “
Streamlined Frameworks for Advancing Metal Based Additive Manufacturing Technologies in Gas Turbine Industry
,”
J. Glob. Power Propuls. Soc.
,
2
, pp.
317
328
.
2.
Elanjeitsenni
,
V. P.
,
Vadivi
,
K. S.
, and
Prasanth
,
B. M.
,
2022
, “
A Review on Thin Films, Conducting Polymers as Sensor Devices
,”
Mater. Res. Express
,
9
(
2
), p.
022001
.
3.
Lei
,
J.-F.
,
Martin
,
L. C.
, and
Will
,
H. A.
,
1997
, “
Advances in Thin Film Sensor Technologies for Engine Applications
,”
Proceedings of ASME Turbo Expo
,
Orlando, FL
,
June 2–5
, pp. 1–6, ASME Paper No. 97-GT-458.
4.
Lei
,
J.-F.
, and
Will
,
H. A.
,
1998
, “
Thin-Film Thermocouples and Strain-Gauge Technologies for Engine Applications
,”
Sens. Actuators, A
,
65
(
2–3
), pp.
187
193
.
5.
Chen
,
Y.-Z.
,
Jiang
,
H.-C.
,
Jiang
,
S.-W.
,
Liu
,
X.-Z.
, and
Zhang
,
W.-L.
,
2014
, “
Thin Film Thermocouples for Surface Temperature Measurement of Turbine Blade
,”
Adv. Mat. Res.
,
873
, pp.
420
425
.
6.
Tougas
,
I. M.
,
Amani
,
M.
, and
Gregory
,
O. J.
,
2013
, “
Metallic and Ceramic Thin Film Thermocouple for Gas Turbine Engines
,”
Sensors
,
13
(
11
), pp.
15324
15347
.
7.
Abdul-Wahed
,
A. M.
,
Lal Roy
,
A.
, and
Takahata
,
K.
,
2016
, “
Microplasma Drawing of Thermocouple Sensors
,”
Proceedings of IEEE Sensors
,
Orlando, FL
,
Oct. 30–Nov. 3
, pp.
1
7
.
8.
Yang
,
D.
,
Pankov
,
V.
,
Zhao
,
L.
, and
Patnaik
,
P.
,
2020
, “
Laser Deposited High Temperature Thin Film Sensors for Gas Turbines
,”
Aircr. Eng. Aerosp. Technol.
,
92
(
1
), pp.
2
7
.
9.
Deng
,
J.
,
Zhang
,
L.
,
Hui
,
L.
,
Jin
,
X.
, and
Ma
,
B.
,
2020
, “
Indium Tin Oxide Thin-Film Thermocouple Probe Based on Sapphire Microrod
,”
Sensors
,
20
(
5
), p.
1289
.
10.
Gao
,
J.
,
Duan
,
F. L.
,
Yu
,
C.
,
Meng
,
W.
,
Liu
,
L.
,
Ding
,
G.
,
Zhang
,
C.
, and
Wang
,
Y.
,
2016
, “
Electrical Insulation of Ceramic Thin Film on Metallic Aero-Engine Blade for High Temperature Sensor Applications
,”
Ceram. Int.
,
42
(
16
), pp.
19269
19275
.
11.
Duan
,
F. L.
,
Ding
,
G.
,
Gao
,
J.
,
Li
,
J.
, and
Cao
,
X.
,
2017
, “
Direct Measurement of Surface Temperature up to 1500 K of Turbine Blade by MEMS Embedded Thin Film Sensors
,”
Proceedings of AIAA AVIATION Forum
,
Denver, CO
,
June 5–9
, pp. 1–8, AIAA Paper No. AIAA-2017-3239.
12.
Duan
,
F. L.
,
Xie
,
Z.
,
Ji
,
Z.
, and
Weng
,
H.
,
2020
, “
Robust Thin-Film Temperature Sensors Embedded on Nozzle Guide Vane Surface
,”
AIAA J.
,
58
(
4
), pp.
1441
1445
.
13.
Shen
,
A.
,
Kim
,
S. B.
,
Bailey
,
C.
,
Ma
,
A. W. K.
, and
Dardona
,
S.
,
2018
, “
Direct Write Fabrication of Platinum-Based Thick-Film Resistive Temperature Detectors
,”
IEEE Sens. J.
,
18
(
22
), pp.
9105
9111
.
14.
Prinz
,
F. B.
, and
Weiss
,
L. E.
,
1994
, “
Automated System for Forming Objects by Incremental Buildup of Layers
,” U.S. Patent No. 5,301,863.
15.
Sampath
,
S.
,
Herman
,
H.
, and
Greenlaw
,
R.
,
2003
, “
Method and Apparatus for Fine Feature Spray Deposition
,” U.S. Patent No. 6,576,861.
16.
Chen
,
Q.
,
Tong
,
T.
,
Longtin
,
J. P.
,
Tankiewicz
,
S.
,
Sampath
,
S.
, and
Gambino
,
R. J.
,
2004
, “
Novel Sensor Fabrication Using Direct-Write Thermal Spray and Precision Laser Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
830
836
.
17.
Longtin
,
J.
,
Sampath
,
S.
,
Gambino
,
R. J.
,
Tankiewicz
,
S.
, and
Greenlaw
,
R.
,
2004
, “
Sensors for Harsh Environments by Direct-Write Thermal Spray
,”
IEEE Sens. J.
,
4
(
1
), pp.
118
121
.
18.
Fasching
,
M.
,
Prinz
,
F. B.
, and
Weiss
,
L. E.
,
1995
, “'
Smart’ Coatings: A Technical Note
,”
J. Therm. Spray Technol.
,
4
(
2
), pp.
133
136
.
19.
Gouldstone
,
C.
,
Gutleber
,
J.
, and
Smith
,
W.
,
2007
, “
Direct-Write Strain and Temperature Sensors for Harsh Environments
,”
AIP Conf. Proc.
,
894
, pp.
949
956
.
20.
Brogan
,
J.
,
2014
, “
Smart Deposition Process Integrates Sensors and Heaters Into Coatings
,”
Adv. Mat. Proc.
,
172
(
11
), pp.
55
58
.
21.
Gambino
,
R. J.
,
Longtin
,
J. P.
,
Brogan
,
J. A.
,
Gutleber
,
J. S.
, and
Greenlaw
,
R. J.
,
2010
, “
Thermocouples
,” U.S. Patent No. 7,753,584.
22.
Grant
,
H. P.
,
Przybysqestki
,
J. S.
, and
Claing
,
R. G.
,
1981
, “
Turbine Blade Temperature Measurements Using Thin Film Temperature Sensors
,” Report No. NASA CR-165201.
23.
Kreider
,
K. G.
,
Sernancik
,
S.
, and
Olson
,
C.
,
1984
, “
Advanced Thin Film Thermocouples
,” NBS Report No. NBSIR-84-2949.
24.
Wrbanek
,
J. D.
, and
Fralick
,
G. C.
,
2006
, “
Thin Film Physical Sensor Instrumentation Research and Development at NASA Glenn Research Center
,” NASA Report No. NASA TM 2006-214395.
25.
Kulkarni
,
A.
,
2021
, “
Novel Temperature Sensors and Wireless Telemetry for Active Condition Monitoring of Advanced Gas Turbines
,” U.S. Department of Energy OSTI Report No. 1835571.
26.
Maier
,
R. R.
,
Havermann
,
D.
,
Schneller
,
O.
,
Mathew
,
J.
,
Polyzos
,
D.
,
MacPherson
,
W. N.
, and
Hand
,
D. P.
,
2014
, “
Optical Fibre Sensing in Metals by Embedment in 3D Printed Metallic Structures
,”
Proceedings of International Conference on Optical Fibre Sensors
,
Santander, Spain
,
June 2–6
, pp. 1–4, SPIE Paper No. 915707.
27.
Havermann
,
D.
,
Mathew
,
J.
,
MacPherson
,
W. N.
,
Maier
,
R. R. J.
, and
Hand
,
D. P.
,
2015
, “
Temperature and Strain Measurements With Fiber Bragg Gratings Embedded in Stainless Steel 316
,”
J. Lightwave Technol.
,
33
(
12
), pp.
2474
2479
. 6945802,
28.
Hossain
,
M. S.
,
Gonzalez
,
J. A.
,
Hernandez
,
R. M.
,
Shuvo
,
M. A. I.
,
Mireles
,
J.
,
Choudhuri
,
A.
,
Lin
,
Y.
, and
Wicker
,
R. B.
,
2016
, “
Fabrication of Smart Parts Using Powder Bed Fusion Additive Manufacturing Technology
,”
Addit. Manuf.
,
10
(
Apr.
), pp.
58
66
.
29.
Stoll
,
P.
,
Leutenecker-Twelsiek
,
B.
,
Spierings
,
A.
,
Klahn
,
C.
, and
Wegener
,
K.
,
2017
, “
Temperature Monitoring of an SLM Part with Embedded Sensor
,”
Proceedings of Additive Manufacturing in Products and Applications
,
Zurich, Switzerland
,
Sept. 13–15
, pp.
273
284
.
30.
Dani
,
I.
,
2019
, “
Smart Components by Additive Technologies
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
480
, p.
012016
.
31.
Hyer
,
H. C.
,
Carver
,
K.
,
List
,
F. A.
, III
, and
Petrie
,
C. M.
, “
Embedding Sensors in 3D Printed Metal Structures
,” ORNL Report No. ORNL TM 2021-2143.
32.
Attridge
,
P.
,
Bajekal
,
S.
,
Klecka
,
M.
,
Wu
,
X.
,
Savulak
,
S.
,
Viens
,
D.
,
Carey
,
M.
, et al
,
2015
, “
Additively Manufactured IN718 Components With Wirelessly Powered and Interrogated Embedded Sensing
,” U.S. Department of Energy OSTI Report No. 1369567.
33.
Naryzhnyy
,
O.
,
Lindbaeck
,
M.
,
Laletin
,
P.
, and
Rotar
,
A.
,
2022
, “
Additively Manufactured Guide Vane with Integral Measurement System for Validation on Engine
,”
Proceedings of ASME Turbo Expo
,
Rotterdam, Netherlands
,
June 13–17
, pp. 1–8, ASME Paper No. GT2022 82132.
34.
Lindbäck
,
M.
,
Frankolin
,
K.
,
Tuneskog
,
E.
,
Karlsson
,
B.
, and
Wang
,
L.
,
2023
, “
Development and Validation Under Engine Operation Environment of Additively Manufactured Hot Turbine Parts
,”
Proceedings of ASME Turbo Expo
,
Boston, MA
,
June 26–30
, pp. 1–10, ASME Paper No. GT2023-103771.
35.
Yang
,
J.
,
2013
, “
A Silicon Carbide Wireless Temperature Sensing System for High Temperature Applications
,”
Sensors
,
13
(
2
), pp.
1884
1901
.
36.
Berdanier
,
R. A.
,
Fishbone
,
S.
,
Thole
,
K. A.
,
Brogan
,
J.
,
Mantese
,
J. V.
,
Martin
,
T. J.
,
Caldwell
,
D.
, et al
,
2021
, “
Sensor Integration on Additively Manufactured Hot Section Components for Wireless Gas Turbine Prognostics
,”
Proceedings of AIAA SciTech
,
Virtual, Online
,
Jan. 11–21
, pp. 1–11, AIAA Paper No. AIAA 2021-3474.
37.
Chandh
,
A.
,
Adhikari
,
S.
,
Wu
,
D.
,
Emerson
,
B.
, and
Lieuwen
,
T.
,
2024
, “
Development and Evaluation of Additively Manufactured Sensors for Combustor Surface Temperature, Heat Flux and Strain Measurements
,”
Proceedings of ASME Turbo Expo
,
London, UK
,
June 24–28
, pp. 1–10, ASME Paper No. GT2024-121136.
38.
Thole
,
K. A.
,
Barringer
,
M. D.
,
Berdanier
,
R. A.
,
Fishbone
,
S.
,
Wagner
,
J. H.
,
Dennis
,
R.
,
Black
,
J.
, et al
,
2021
, “
Defining a Testbed for the U.S. Turbine Industry: The National Experimental Turbine (NExT)
,”
Proceedings of AIAA Propulsion and Energy Forum
,
Virtual, Online
,
Aug. 9–11
, pp. 1–14, AIAA Paper No. 2021-3489.
39.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2022
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME J. Turbomach.
,
144
(
12
), p.
121003
.
40.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2018
, “
Effects of Coolant Feed Direction on Additively Manufactured Film Cooling Holes
,”
ASME J. Turbomach.
,
140
(
11
), p.
111001
.
41.
Furgeson
,
M. T.
,
Veley
,
E. M.
,
Yoon
,
C.
,
Gutierrez
,
D.
,
Bogard
,
D. G.
, and
Thole
,
K. A.
,
2022
, “
Development and Evaluation of Shaped Film Cooling Holes Designed for Additive Manufacturing
,”
Proceedings of ASME Turbo Expo
,
Rotterdam, Netherlands
,
June 13–17
, pp. 1–14, ASME Paper No. GT2022-83201.
42.
Veley
,
E. M.
, and
Thole
,
K. A.
,
2023
, “
Cooling Performance of Film-Cooling Holes Fed by Channels of Various Shapes
,”
Int. J. Heat Mass Transfer
,
216
, p.
124561
.
43.
Banko
,
A. J.
,
Benson
,
M. J.
,
Davidson
,
F. T.
,
Zia
,
W.
,
Bordbar
,
A.
,
Boyce
,
C.
,
Veley
,
E. M.
, and
Thole
,
K. A.
,
2023
, “
Effects of Surface Roughness on Three-Dimensional Flow Structure Within Shaped Film Cooling Holes
,”
Proceedings of ASME Turbo Expo
,
Boston, MA
,
June 26–30
, pp. 1–12, ASME Paper No. GT2023-104073.
44.
Thole
,
K. A.
,
Lynch
,
S. P.
, and
Wildgoose
,
A. J.
,
2021
, “
Review of Advances in Convective Heat Transfer Developed Through Additive Manufacturing
,”
Adv. Heat Transfer
,
53
, pp.
249
325
.
45.
Wildgoose
,
A. J.
,
Thole
,
K. A.
,
Subramanian
,
R.
,
Kersting
,
L.
, and
Kulkarni
,
A.
,
2023
, “
Impacts of the Additive Manufacturing Process on the Roughness of Engine Scale Vanes and Cooling Channels
,”
ASME J. Turbomach.
,
145
(
4
), p.
041013
.
46.
Gok
,
G.
,
Zacchio
,
J.
,
Caldwell
,
J.
,
Martin
,
T.
, and
Mantese
,
J.
,
2024
, “
Signal and Power Transfer in a Waveguide Confined Network
,”
Proceedings of GOMACTech
,
Charleston, SC
,
Mar. 18–21
, p.
1
.
47.
Barringer
,
M. D.
,
Coward
,
A.
,
Clark
,
K.
,
Thole
,
K. A.
,
Schmitz
,
J.
,
Wagner
,
J.
,
Alvin
,
M. A.
,
Burke
,
P.
, and
Dennis
,
R.
,
2014
, “
The Design of a Steady Aero Thermal Research Turbine (START) for Studying Secondary Flow Leakages and Airfoil Heat Transfer
,”
Proceedings of ASME Turbo Expo
,
Düsseldorf, Germany
,
June 16–20
, pp. 1–13, ASME Paper No. GT2014-25570.
You do not currently have access to this content.