Abstract

Double-walled liners consisting of impingement and effusion cooling are commonly used to cool gas turbine combustor chambers. Engine ingestion of particulates such as dirt, sand, or ash leads to particulate deposition and blockage of cooling holes in these liners. Prior work on double-walled liners has shown that deposition leads to flow blockage; however, no experimental work has studied the reductions in cooling that result from the deposition. The goal of the present work was to quantify this reduction in cooling by evaluating the heat transfer coefficient on the cold side of an effusion plate with and without dirt buildup. Heat transfer coefficients were quantified over a range of Reynolds numbers, pressure ratios, plate-to-plate spacings, and dirt injection amounts. The injection of dirt onto the cold-side effusion plate surface resulted in flow blockages and cooling reductions as high as 55%, with these effects differing for pressure ratio and plate-to-plate spacing. Scan data of the dirty effusion plate were used to characterize the deposition thicknesses for the different parameters tested. Overall, the heat transfer when having deposition on the effusion plate affected the cooling much beyond the insulation effect of the dirt layer. These results suggest that the effects of particulate buildup on the cooling flow field are an important driver in double-wall combustor liners.

References

1.
Kim
,
J.
,
Dunn
,
M. G.
,
Baran
,
A. J.
,
Wade
,
D. P.
, and
Tremba
,
E. L.
,
1993
, “
Deposition of Volcanic Materials in the Hot Sections of Two Gas Turbine Engines
,”
ASME J. Eng. Gas Turbines Power
,
115
(
3
), pp.
641
651
.
2.
Dunn
,
M. G.
,
Baran
,
A. J.
, and
Miatech
,
J.
,
1996
, “
Operation of Gas Turbine Engines in Volcanic Ash Clouds
,”
ASME J. Eng. Gas Turbines Power
,
118
(
4
), pp.
724
731
.
3.
Dunn
,
M. G.
,
Padova
,
C.
,
Moller
,
J. E.
, and
Adams
,
R. M.
,
1987
, “
Performance Deterioration of a Turbofan and a Turbojet Engine Upon Exposure to a Dust Environment
,”
ASME J. Eng. Gas Turbines Power
,
109
(
3
), pp.
336
343
.
4.
Batcho
,
P. F.
,
Moller
,
J. C.
,
Padova
,
C.
, and
Dunn
,
M. G.
,
1987
, “
Interpretation of Gas Turbine Response Due to Dust Ingestion
,”
ASME J. Eng. Gas Turbines Power
,
109
(
3
), pp.
344
352
.
5.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Boldrov
,
A. I.
, and
Stalder
,
J. P.
,
1998
, “
Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and with Different Initial Parameters
,”
International Gas Turbine and Aeroengine Congress and Exhibition
,
Stockholm, Sweden
,
June 2–5
.
6.
Hamed
,
A.
,
Tabakoff
,
W.
,
Rivir
,
R. B.
,
Kaushik
,
D.
, and
Arora
,
P.
,
2005
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
.
7.
Hamed
,
A.
,
Tabakoff
,
W.
, and
Wenglarz
,
R.
,
2006
, “
Erosion and Deposition in Turbomachinery
,”
J. Propulsion Power
,
22
(
2
), pp.
350
360
.
8.
Bons
,
J. P.
,
Lo
,
C.
,
Nied
,
E.
, and
Han
,
J.
,
2022
, “
The Effect of Gas and Surface Temperature on Cold-Side and Hot-Side Turbine Deposition
,”
ASME J. Turbomach.
,
144
(
12
), p.
121013
.
9.
Whitaker
,
S. M.
,
Peterson
,
B.
,
Miller
,
A. F.
, and
Bons
,
J. P.
,
2016
, “
The Effect of Particle Loading, Size, and Temperature on Deposition in a Vane Leading Edge Impingement Cooling Geometry
,”
ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition
,
Seoul, South Korea
,
June 13–17
.
10.
Wolff
,
T. M.
,
Bowen
,
C. P.
, and
Bons
,
J. P.
,
2018
, “
The Effect of Particle Size on Deposition in an Effusion Cooling Geometry
,”
Proceedings of The AIAA Scitech Forum
,
Kissimmee, FL
,
Jan. 8–12
.
11.
Singh
,
S.
,
Reagle
,
C.
,
Delimont
,
J.
,
Tafti
,
D.
,
Ng
,
W.
, and
Ekkad
,
S.
,
2014
, “
Sand Transport in a Two Pass Internal Cooling Duct With Rib Turbulators
,”
Int. J. Heat Fluid Flow
,
46
, pp.
158
167
.
12.
Lundgreen
,
R. K.
,
2017
, “
Pressure and Temperature Effects on Particle Deposition in an Impinging Flow
,”
ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
,
Charlotte, NC
,
June 26–30
.
13.
Dahnke
,
B.
,
1971
, “
The Capture of Aerosol Particles by Surfaces
,”
J. Colloid Interface Sci.
,
37
(
2
), pp.
342
353
.
14.
Johnson
,
K. L.
,
Kendall
,
K.
, and
Roberts
,
A. D.
,
1971
, “
Surface Energy and the Contact of Elastic Solids
,”
Proc. R. Soc. London, Ser. A
,
324
(
1558
), pp.
301
313
.
15.
Brach
,
R. M.
, and
Dunn
,
P. F.
,
1992
, “
A Mathematical Model of the Impact and Adhesion of Microspheres
,”
Aerosol Sci. Technol.
,
16
(
1
), pp.
51
64
.
16.
Bons
,
J. P.
,
Prenter
,
R.
, and
Whitaker
,
S.
,
2017
, “
A Simple Physics-Based Model for Particle Rebound and Deposition in Turbomachinery
,”
ASME J. Turbomach.
,
139
(
8
), p.
081009
.
17.
Yang
,
X.
,
Hao
,
Z.
,
Feng
,
Z.
,
Ligrani
,
P.
, and
Weigand
,
B.
,
2024
, “
Conjugate Heat Transfer Evaluation of Turbine Blade Leading-Edge Swirl and Jet Impingement Cooling With Particulate Deposition
,”
ASME J. Turbomach.
,
146
(
1
), p.
011003
.
18.
Cardwell
,
N. D.
,
Thole
,
K. A.
, and
Burd
,
S. W.
,
2010
, “
Investigation of Sand Blocking Within Impingement and Film-Cooling Holes
,”
ASME J. Turbomach.
,
132
(
2
), p.
021020
.
19.
Land
,
C. C.
,
Joe
,
C.
, and
Thole
,
K. A.
,
2010
, “
Considerations of a Double-Wall Cooling Design to Reduce Sand Blockage
,”
ASME J. Turbomach.
,
132
(
3
), p.
031011
.
20.
Walsh
,
W. S.
,
Thole
,
K. A.
, and
Joe
,
C.
,
2006
, “
Effects of Sand Ingestion on the Blockage of Film-Cooling Holes
,”
ASME Turbo Expo 2006: Power for Land, Sea, and Air
,
Barcelona, Spain
,
May 8–11
.
21.
Cory
,
T. M.
,
Thole
,
K. A.
,
Kirsch
,
K. L.
,
Lundgreen
,
R.
,
Prenter
,
R.
, and
Kramer
,
S.
,
2019
, “
Impact of Dust Feed on Capture Efficiency and Deposition Patterns in a Double-Walled Liner
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
,
Phoenix, AZ
,
June 17–21
.
22.
Fallon
,
B.
,
Mcferran
,
K.
,
Fox
,
S.
,
Thole
,
K. A.
, and
Lynch
,
S. P.
,
2023
, “
Comparison of Dirt Deposition on Double-Walled Combustor Liner Geometries
,”
ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition
,
Boston, MA
,
June 26–30
.
23.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1966
, “
Heat Transfer Characteristics of Impinging Two-Dimensional Air Jets
,”
J. Heat Mass Transfer
,
88
(
1
), pp.
101
107
.
24.
Gardon
,
R.
, and
Akfirat
,
J. C.
,
1965
, “
The Role of Turbulence in Determining the Heat-Transfer Characteristics Of Impinging Jets
,”
J. Heat Mass Transfer
,
8
(
10
), pp.
1261
1272
.
25.
Van Treuren
,
K. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
And Jones
,
T. V.
,
1993
, “
Detailed Measurements of Local Heat Transfer Coefficient and Adiabatic Wall Temperature Beneath and Array of Impinging Jets
,”
ASME J. Turbomach.
,
116
(
3
), pp.
369
371
.
26.
Uysal
,
U.
,
Li
,
P. W.
,
Chyu
,
M. K.
, and
Cunha
,
F. J.
,
2006
, “
Heat Transfer on Internal Surfaces of a Duct Subjected to Impingement of a Jet Array With Varying Jet Hole-Size and Spacing
,”
ASME J. Turbomach.
,
128
(
1
), pp.
158
165
.
27.
Kercher
,
D. M.
, and
Tabakoff
,
W.
,
1970
, “
Heat Transfer by a Square Array of Round Air Jets Impinging Perpendicular to a Flat Surface Including the Effect of Spent Air
,”
ASME J. Eng. Power
,
92
(
1
), pp.
73
82
.
28.
Goldstein
,
R. J.
, and
Timmers
,
J. F.
,
1982
, “
Visualization of Heat Transfer From Arrays of Impinging Jets
,”
J. Heat Mass Transfer
,
25
(
12
), pp.
1857
1868
.
29.
Goldstein
,
R. J.
,
Behbahani
,
A. I.
, and
Heppelmann
,
K. K.
,
1986
, “
Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet
,”
J. Heat Mass Transfer
,
29
(
8
), pp.
1227
1235
.
30.
Hollworth
,
B. R.
, and
Wilson
,
S. I.
,
1984
, “
Entrainment Effects on Impingement Heat Transfer: Part I—Measurements of Heated Jet Velocity and Temperature Distributions, and Recovery Temperatures on Target Surface
,”
ASME J. Heat Mass Transfer
,
106
(
4
), pp.
797
803
.
31.
Hollworth
,
B. R.
, and
Gero
,
L. R.
,
1985
, “
Entrainment Effects on Impingement Heat Transfer: Part II—Local Heat Transfer Measurements
,”
ASME J. Heat Mass Transfer
,
107
(
4
), pp.
910
915
.
32.
Hollworth
,
B. R.
, and
Dagan
,
L.
,
1980
, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface, Part 1: Average Heat Transfer
,”
ASME J. Eng. Power Trans.
,
102
(
4
), pp.
994
999
.
33.
Hollworth
,
B. R.
,
Lehmann
,
G.
, and
Rosiczkowski
,
J.
,
1983
, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface, Part 2: Local Heat Transfer
,”
ASME J. Eng. Power Trans.
,
105
(
2
), pp.
393
402
.
34.
Hollworth
,
B. R.
, and
Berry
,
R. D.
,
1978
, “
Heat Transfer From Arrays of Impinging Jets With Large Jet-to-Jet Spacing
,”
ASME J. Heat Mass Transfer
,
100
(
2
), pp.
352
357
.
35.
Choi
,
W.
, and
Kim
,
S.
,
2022
, “
Effect of Effusion Hole Arrangement on Jet Array Impingement Heat Transfer
,”
Int. J. Heat Mass Transfer
,
192
, p.
122900
.
36.
Hulesmann
,
N.
, and
Thole
,
K. A.
,
2021
, “
Effects of Jet Impingement on Convective Heat Transfer in Effusion Holes
,”
ASME J. Turbomach.
,
143
(
6
), p.
061012
.
37.
Kline
,
S. J.
, and
Mcclintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
You do not currently have access to this content.