Abstract

Flow and heat transfer in a compressor rotating disc cavity with axial throughflow is investigated using wall-modeled large-eddy simulations (WMLES). These are compared to measurements from recently published experiments and used to investigate high Reynolds number effects. The simulations use an open-source computational fluid dynamics solver with high parallel efficiency and employ the Boussinesq approximation for centrifugal buoyancy. Kinetic energy effects (characterized by Eckert number) are accounted for by scaling the thermal boundary conditions from static temperature to rotary stagnation temperature. The WMLES shows very encouraging agreement with experiments up to the highest Reynolds number tested, Reϕ=3.0×106. A further simulation at Reϕ=107 extends the investigation to an operating condition more representative of aero engine high-pressure compressors. The results support the scaling of shroud heat transfer found at lower Reϕ, but disc heat transfer is higher than expected from a simple extrapolation of lower Reϕ results. This is associated with transition to turbulence in the disc Ekman layers and is consistent with the boundary layer Reynolds numbers at this condition. The introduction of swirl in the axial throughflow, as may occur at engine conditions, could reduce the boundary layer Reynolds numbers and delay the transition.

References

1.
Wang
,
R.
,
Gao
,
F.
,
Chew
,
J. W.
,
Marxen
,
O.
, and
Sun
,
Z
,
2024
, “
Advanced Modelling of Flow and Heat Transfer in Rotating Disc Cavities Using Open-Source Computational Fluid Dynamics
,”
ASME J. Eng. Gas Turbines Power
,
146
(
6
), p.
061022
.
2.
Sun
,
Z.
,
Chew
,
J. W.
,
Gao
,
F.
,
Bristot
,
A.
, and
Williams
,
J.
,
2024
, “
Parametric Dependence and Elementary Modelling for Compressor Disc Cavity Heat Transfer
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
238
(
6
), pp.
2474
2488
.
3.
Sun
,
Z.
,
Gao
,
F.
,
Chew
,
J. W.
, and
Amirante
,
D
,
2022
, “
Large Eddy Simulation Investigation of Low Rossby Number Buoyant Flow in Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121023
.
4.
Gao
,
F.
, and
Chew
,
J. W
,
2022
, “
Flow and Heat Transfer Mechanisms in a Rotating Compressor Cavity Under Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
144
(
5
), p.
051010
.
5.
Gao
,
F.
, and
Chew
,
J. W.
,
2021
, “
Evaluation and Application of Advanced CFD Models for Rotating Disc Flows
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
235
(
23
), pp.
6847
6864
.
6.
Pitz
,
D. B.
,
Chew
,
J. W.
, and
Marxen
,
O.
,
2019
, “
Effect of an Axial Throughflow on Buoyancy-Induced Flow in a Rotating Cavity
,”
Int. J. Heat Fluid Flow
,
80
, p.
108468
.
7.
Gao
,
F.
, and
Chew
,
J. W
,
2021
, “
Ekman Layer Scrubbing and Shroud Heat Transfer in Centrifugal Buoyancy-Driven Convection
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071010
.
8.
Saini
,
D.
, and
Sandberg
,
R. D
,
2021
, “
Large-Eddy Simulations of High Rossby Number Flow in the High-Pressure Compressor Inter-Disk Cavity
,”
ASME J. Turbomach.
,
143
(
11
), p.
111002
.
9.
Owen
,
J. M.
, and
Long
,
C. A
,
2015
, “
Review of Buoyancy-Induced Flow in Rotating Cavities
,”
ASME J. Turbomach.
,
137
(
11
), p.
111001
.
10.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D
,
2021
, “
Analysis of Shroud and Disk Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
9
), p.
091005
.
11.
Jackson
,
R. W.
,
Luberti
,
D.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D
,
2021
, “
Measurement and Analysis of Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
6
), p.
061004
.
12.
Long
,
C. A.
, and
Childs
,
P. R. N.
,
2007
, “
Shroud Heat Transfer Measurements Inside a Heated Multiple Rotating Cavity With Axial Throughflow
,”
Int. J. Heat Fluid Flow
,
28
(
6
), pp.
1405
1417
.
13.
Atkins
,
N. R.
,
Investigation of a Radial-Inflow Bleed as a Potential for Compressor Clearance Control
,” ASME Paper No. GT2013-95768.
14.
Diemel
,
E.
,
Odenbach
,
S.
,
Uffrecht
,
W.
,
Rey Villazon
,
J.
, and
Guijarro Valencia
,
A
,
2024
, “
Analysis of Cavity Disk Heat Transfer by Solving Inverse Heat Transfer Problem
,”
ASME J. Turbomach.
,
146
(
4
), p.
044501
.
15.
Kilfoil
,
A. S. R.
, and
Chew
,
J. W.
,
Modelling of Buoyancy-Affected Flow in Co-Rotating Disc Cavities
,” ASME Paper No. GT2009-59214.
16.
Luberti
,
D.
,
Patinios
,
M.
,
Jackson
,
R. W.
,
Tang
,
H.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D
,
2021
, “
Design and Testing of a Rig to Investigate Buoyancy-Induced Heat Transfer in Aero-Engine Compressor Rotors
,”
ASME J. Eng. Gas Turbines Power
,
143
(
4
), p.
041030
.
17.
Archambeau
,
F.
,
Méchitoua
,
N.
, and
Sakiz
,
M.
,
2004
, “
Code Saturne: A Finite Volume Code for the Computation of Turbulent Incompressible Flows-Industrial Applications
,”
Int. J. Finite Vol.
,
1
(
1
), pp.
1
62
.
18.
Wang
,
R.
,
Chew
,
J. W.
,
Gao
,
F.
, and
Marxen
,
O.
,
2024
, “
Large-Eddy Simulation of Axial, Radial and Mixed Centrifugal Convection in a Closed Rotating Cavity
,”
Int. J. Heat Mass Transfer
,
227
, p.
125559
.
19.
EDF R&D.
Code_Saturne 8.0 User Guide
.
20.
Sun
,
Z.
,
Lindblad
,
K.
,
Chew
,
J. W.
, and
Young
,
C.
,
2006
, “
LES and RANS Investigations Into Buoyancy-Affected Convection in a Rotating Cavity With a Central Axial Throughflow
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
318
325
.
21.
Owen
,
J. M.
,
Abrahamsson
,
H.
, and
Lindblad
,
K.
,
2007
, “
Buoyancy-Induced Flow in Open Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
129
(
4
), pp.
893
900
.
22.
Jackson
,
R. W.
,
Tang
,
H.
,
Scobie
,
J. A.
,
Pountney
,
O. J.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D
,
2022
, “
Unsteady Pressure Measurements in a Heated Rotating Cavity
,”
ASME J. Eng. Gas Turbines Power
,
144
(
4
), p.
041017
.
23.
Owen
,
J. M.
,
Pincombe
,
J. R.
, and
Rogers
,
R. H.
,
1985
, “
Source–Sink Flow Inside a Rotating Cylindrical Cavity
,”
J. Fluid Mech.
,
155
, pp.
233
265
.
24.
Lingwood
,
R. J.
,
1997
, “
Absolute Instability of the Ekman Layer and Related Rotating Flows
,”
J. Fluid Mech.
,
331
, pp.
405
428
.
You do not currently have access to this content.