Abstract

Partial admission is an essential method to ensure the effective operation of turbines in various operating conditions. The transition section of partial admission turbines is pivotal in governing the unsteadiness and nonuniformity, yet its flow dynamics remain elusive. To enhance the comprehension within supersonic partial admission impulse (SPAI) turbines, this study uses 3D unsteady simulations on a single-stage SPAI turbine with four nozzles to understand its dynamics and compares the performance of centralized and symmetrical nozzle arrangements. The findings reveal that shock waves are produced in the admission area, followed by two flow separations, while the turbulent, stagnant fluid exists in the nonadmission area. A strong shock wave is formed at the entrance of the transition section channel leaving the admission area. High- and low-energy gases mix in the subsequent channel and undergo an emptying process, resulting in significant energy loss. Furthermore, blades undergo fluctuating aerodynamic forces, and phenomena of under- and over-shoot are observed as the blades enter or exit the admission area, impeding turbine rotation or providing an additional torque. When adopting symmetrical nozzle arrangements, the mixing process is strengthened, resulting in a 0.29% decrease in the isentropic efficiency with the spacing of 40 deg and a 1.30% decrease with the spacing of 60 deg compared to the centralized arrangement. However, the lateral force and overturning moment on the rotor are mitigated. Consequently, in practical engineering, adopting a symmetrical arrangement is a feasible solution to ensure the stability and safety of SPAI turbine operation.

References

1.
Guan
,
Y.
,
Li
,
W.
,
Zhu
,
Y.
,
Wang
,
X.
,
Huang
,
G.
, and
Chen
,
H.
,
2023
, “
Aerodynamic Performance and Flow Characteristics of a Compressed Air Energy Storage Axial Turbine With Nozzle Governing
,”
J. Energy Storage
,
63
, p.
106967
.
2.
Lee
,
H. G.
,
Shin
,
J. H.
,
Choi
,
C.-H.
,
Jeong
,
E.
, and
Kwon
,
S.
,
2018
, “
Partial Admission Effect on the Performance and Vibration of a Supersonic Impulse Turbine
,”
Acta Astronaut.
,
145
, pp.
105
115
.
3.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.
4.
Song
,
L.
,
Li
,
J.
, and
Wen
,
K.
,
2016
, “
Aerodynamic Performance Analysis of Partial Admission Dual Row Control Stage at Different Working Conditions
,”
J. Mech. Sci. Technol.
,
30
(
1
), pp.
157
169
.
5.
Hushmandi
,
N. B.
, and
Fransson
,
T. H.
,
2011
, “
Effects of Multiblocking and Axial Gap Distance on Performance of Partial Admission Turbines: A Numerical Analysis
,”
ASME J. Turbomach.
,
133
(
3
), p.
031028
.
6.
Xie
,
Y.
,
Gao
,
K.
,
Lan
,
J.
, and
Xie
,
G.
,
2013
, “
Computational Fluid Dynamics Modeling Three-Dimensional Unsteady Turbulent Flow and Excitation Force in Partial Admission Air Turbine
,”
Math. Probl. Eng.
,
2013
(
1
), p.
251926
.
7.
Heen
,
H. K.
, and
Mann
,
R. W.
,
1961
, “
The Hydraulic Analogy Applied to Nonsteady, Two-Dimensional Flow in the Partial-Admission Turbine
,”
ASME J. Basic Eng.
,
83
(
3
), pp.
408
419
.
8.
Yahya
,
S.
,
1968
, “
Transient Velocity and Mixing Losses in Axial Flow Turbines With Partial Admission
,”
Int. J. Mech. Sci.
,
10
(
2
), pp.
65
82
.
9.
Yahya
,
S.
,
1969
, “
Some Tests on Partial Admission Turbine Cascades
,”
Int. J. Mech. Sci.
,
11
(
10
), pp.
853
866
.
10.
Huzel
,
D. K.
,
1992
,
Modern Engineering for Design of Liquid-Propellant Rocket Engines
, Vol.
147
,
AIAA
,
Washington, DC
.
11.
Denton
,
J. D.
,
1993
,
Loss Mechanisms in Turbomachines
, Vol.
78897
,
ASME
,
Cincinnati, OH
.
12.
Denton
,
J.
, and
Dawes
,
W.
,
1998
, “
Computational Fluid Dynamics for Turbomachinery Design
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
213
(
2
), pp.
107
124
.
13.
Kroon
,
R.
,
1940
, “
Turbine-Blade Vibration Due to Partial Admission
,”
ASME J. Appl. Mech
,
7
(
4
), pp.
A161
A165
.
14.
Pigott
,
R.
,
1980
, “
Turbine Blade Vibration Due to Partial Admission
,”
Int. J. Mech. Sci.
,
22
(
4
), pp.
247
264
.
15.
Sakai
,
N.
,
Harada
,
T.
, and
Imai
,
Y.
,
2005
, “
Application of CFD to Partial Admission Stages of Steam Turbine
,”
Proceedings of ASME 2005 Power Conference
,
Chicago, IL
,
Apr. 5–7
, Vol. 41820, pp.
603
608
.
16.
Cao
,
Z.
,
Zhang
,
X.
,
Wang
,
C.
,
Gao
,
X.
,
Gao
,
L.
, and
Liu
,
B.
,
2022
, “
A Study on the Flow Physics of a Supersonic Partial Admission Impulse Turbine for Different Tip Clearances
,”
Aerosp. Sci. Technol.
,
123
, p.
107469
.
17.
He
,
L.
,
1997
, “
Computation of Unsteady Flow Through Steam Turbine Blade Rows at Partial Admission
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
211
(
3
), pp.
197
205
.
18.
Tokuyama
,
Y.
,
Funazaki
,
K.-I.
,
Kato
,
H.
,
Shimiya
,
N.
,
Shimagaki
,
M.
, and
Uchiumi
,
M.
,
2014
, “
Computational Analysis of Unsteady Flow in a Partial Admission Supersonic Turbine Stage
,”
Proceedings of ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
.
19.
Cho
,
C.
,
Cho
,
S.
, and
Ahn
,
K.
,
2010
, “
A Study of Partial Admission Characteristics on a Small-Scale Radial-Inflow Turbine
,”
Proc. Inst. Mech. Eng. Part A: J. Power Energy
,
224
(
5
), pp.
737
748
.
20.
Mishra
,
A.
, and
Ghosh
,
P.
,
2017
, “
Flow Field Investigation in a Partial Admission Supersonic Turbine of LOX Booster Turbopump for Staged Combustion Cycle Based Rocket Engine
,”
Proceedings of ASME 2017 Gas Turbine India Conference
,
Bangalore, India
,
Dec. 7–8
.
21.
Bellucci
,
J.
,
Rubechini
,
F.
, and
Arnone
,
A.
,
2018
, “
ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition
,”
Proceedings of ASME Turbo Expo 2018
,
Oslo, Norway
,
June 11–15
.
22.
Pan
,
Y.
,
Yuan
,
Q.
,
Niu
,
G.
,
Gu
,
J.
, and
Zhu
,
G.
,
2019
, “
Effect of Nozzle Box Arrangement on the Aerodynamic Performance of a Single Stage Partial Admission Turbine
,”
Appl. Therm. Eng.
,
159
, p.
113911
.
23.
Jiang
,
J.
,
Jiawen
,
L.
,
Guobiao
,
C.
,
Jue
,
W.
, and
Qiyan
,
L.
,
2017
, “
Effects of Axial Gap and Nozzle Distribution on Aerodynamic Forces of a Supersonic Partial-Admission Turbine
,”
Chin. J. Aeronaut.
,
30
(
6
), pp.
1844
1853
.
24.
Aghaei tog
,
R.
, and
Mesgarpoor Tousi
,
A.
,
2014
, “
Flow Pattern Improvement in Nozzle-Rotor Axial Gap in Impulse Turbine
,”
Aircr. Eng. Aerosp. Technol.: Int. J.
,
86
(
2
), pp.
108
116
.
25.
Hushmandi
,
N. B.
,
Fridh
,
J. E.
, and
Fransson
,
T. H.
,
2011
, “
Unsteady Forces of Rotor Blades in Full and Partial Admission Turbines
,”
ASME J. Turbomach.
,
133
(
4
), p.
041017
.
26.
Togh
,
R. A.
, and
Karimi
,
M. M.
,
2020
, “
Finding an Optimal Blade-Profile to Improving the Performance of Partially Admitted Turbines
,”
Aircr. Eng. Aerosp. Technol.
,
92
(
6
), pp.
863
877
.
You do not currently have access to this content.