The nonlinear ordinary differential equations describing the dynamics of a fluid filled circular cylindrical shell, obtained in Part 1 of the present study, is studied by using a second order perturbation approach and direct simulations. Strong modal interactions are found when the structure is excited with small resonant loads. Modal interactions arise in the whole range of vibration amplitude, showing that the internal resonance condition makes the system non-linearizable even for extremely small amplitudes of oscillation. Stationary and nonstationary oscillations are observed and the complex nature of modal interactions is accurately analyzed. No chaotic motion is observed in the case of 1:1:1:2 internal resonance studied. [S0739-3717(00)01304-0]

1.
Amabili
,
M
,
Pellicano
,
F.
, and
Vakakis
,
A. F.
,
2000
, “
Nonlinear Vibrations and Multiple Resonances of Fluid-Filled, Circular Shells. Part 1: Equations of Motion and Numerical Results
,”
J. Vibr. Acoust.
,
122
, pp.
346
354
.
2.
Guckenheimer, J., and Holmes, P., 1983, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Springer-Verlag, Berlin.
3.
Wiggins, S., 1990, Introduction to Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York.
4.
Amabili
,
M.
,
Pellicano
,
F.
, and
Pai¨doussis
,
M. P.
,
1998
, “
Nonlinear Vibrations of Simply Supported, Circular Cylindrical Shells, Coupled to Quiescent Fluid
,”
J. Fluids Struct.
12
, No.
7
, pp.
883
918
.
5.
Evensen, D. A., 1967, “Nonlinear flexural vibrations of thin-walled circular cylinders,” NASA TN D-4090.
6.
Ginsberg
,
J. H.
,
1973
, “
Large amplitude forced vibrations of simply supported thin cylindrical shells
,”
J. Appl. Mech.
,
40
, pp.
471
477
.
7.
Chen
,
J. C.
, and
Babcock
,
C. D.
,
1975
, “
Nonlinear vibration of cylindrical shells
,”
AIAA J.
,
13
, pp.
868
876
.
8.
Nayfeh
,
A. H.
, and
Raouf
,
R. A.
,
1987
, “
Non-linear oscillation of circular cylindrical shells
,”
Int. J. Solids Struct.
,
23
, pp.
1625
1638
.
9.
Arnold, V. I., 1978, Mathematical Methods of Classical Mechanics, Springer Verlag, New York.
10.
Chirikov
,
B. V.
,
1979
, “
A Universal Instability of Many-Dimensional Oscillator Systems
,”
Phys. Rep.
,
52
, No.
5
, pp.
263
379
.
11.
Nayfeh, A. H., and Mook, D. T., 1979, Nonlinear oscillations, Wiley, New York.
12.
Kunitsyn
,
A. L.
, and
Tuyakbayev
,
A. A.
,
1992
, “
The Stability of Hamiltonian Systems in the case of Multiple fourth-order Resonance
,”
J. Appl. Math. Mech.
,
56
, No.
4
, pp.
572
576
.
13.
Lichtenberg, A. J., and Lieberman, H. A., 1983, Regular and Stochastic Motion, Springer-Verlag, Berlin.
14.
Brjuno
,
A. D.
,
1971
, “
Analytical form of differential equation
,”
Trans. Moscow Math. Soc.
,
25
, pp.
131
288
.
15.
Semler
,
C.
, and
Pai¨doussis
,
M. P.
,
1996
, “
Nonlinear analysis of the parametric resonances of a planar fluid-conveying cantilevered pipe
,”
J. Fluid Struct.
,
10
, pp.
787
825
.
16.
Doedel, E. J., Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Y. A., Sandstede, B., and Wang, X., 1998, “Auto 97: Continuation and Bifurcation Software for Ordinary Differential Equations (with HomCont),” Concordia University, Montreal, Canada.
17.
Wolfram, S., 1996, The Mathematica Book, 3rd ed., Cambridge University Press, Cambridge, UK.
18.
Press, H. W., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1986, Numerical Recipes, Cambridge University Press, New York.
You do not currently have access to this content.