In this work, linear matrix inequality (LMI) methods are proposed for computationally efficient solution of damage detection problems in structures. The structural damage detection problem that is considered consists of estimating the existence, location, and extent of stiffness reduction in structures using experimental modal data. This problem is formulated as a convex optimization problem involving LMI constraints on the unknown structural stiffness parameters. LMI optimization problems have low computational complexity and can be solved efficiently using recently developed interior-point methods. Both a matrix update and a parameter update formulation of the damage detection is provided in terms of LMIs. The presence of noise in the experimental data is taken explicitly into account in these formulations. The proposed techniques are applied to detect damage in simulation examples and in a cantilevered beam test-bed using experimental data obtained from modal tests. [S0739-3717(00)00104-5]

1.
Pandey
,
A.
,
Biswas
,
M.
, and
Samman
,
M.
,
1991
, “
Damage Detection from Changes in Mode Shapes
,”
J. Sound Vib.
,
145
, pp.
321
332
.
2.
Hajela
,
P.
, and
Soeiro
,
F.
,
1991
, “
Structural Damage Detection Based on Static and Modal Analysis
,”
AIAA J.
,
28
, pp.
1110
1116
.
3.
Agbabian
,
M.
,
Masri
,
S.
,
Miller
,
R.
, and
Caughey
,
T.
,
1991
, “
System Identification Approach to Detection of Structural Changes
,”
ASCE J. Eng. Mech.
,
117
, pp.
370
390
.
4.
Yuen
,
M.
,
1985
, “
A Numerical Study of the Eigen-parameters of a Damaged Catilevered Beam
,”
J. Sound Vib.
,
103
, pp.
301
310
.
5.
Cawley
,
P.
, and
Ray
,
R.
,
1988
, “
A Comparison of the Natural Frequency Changes Produced by Cracks and Slots
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
110
, pp.
366
370
.
6.
Ismail
,
F.
,
Ibrahim
,
A.
, and
Martin
,
H.
,
1990
, “
Identification of Fatigue Cracks from Vibration Testing
,”
J. Sound Vib.
,
140
, pp.
305
317
.
7.
Chondros
,
T.
, and
Dimarongonas
,
A.
,
1989
, “
Dynamic Sensitivity of Structures to Cracks
,”
ASME J. Vib., Acoust., Stress, Reliab. Des.
,
111
, pp.
251
256
.
8.
Baruch
,
M.
, and
Bar Itzhack
,
I. Y.
,
1978
, “
Optimum Weighted Orthogonalization of Measured Modes.
AIAA J.
,
16
, No.
4
, pp.
346
351
.
9.
Zimmerman, D., and Smith, S. W., 1992, “Model Refinement and Damage Location for Intelligent Structures,” Intelligent Structural Systems, Tzou, H. S., and Anderson, G. L., eds., Kluwer Academic, Dordrecht, pp. 403–452.
10.
Doeblin, S. W., Farrar, C. R., Prime, M. B., and Sheritz, D. W., “Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review,” Los Alamos Report LA-13070-MS, NM, 1996.
11.
Mottershead
,
J. E.
, and
Friswell
,
M. I.
,
1993
, “
Model Updating in Structural Dynamics: A Survey
,”
J. Sound Vib.
,
167
, No.
2
, pp.
347
375
.
12.
Kabe
,
A.
,
1985
, “
Stiffness Matrix Adjustment Using Mode Data
,”
AIAA J.
,
23
, No.
9
, pp.
1431
1436
.
13.
Kammer
,
D.
,
1988
, “
Optimum Approximation for Residual Stiffness in Linear Systems Identification
,”
AIAA J.
,
26
, No.
1
, pp.
104
112
.
14.
Smith, S., and Beattie, C., 1993, “Simultaneous Expansion and Orthogonalization of Measured Modes for Structural Identification,” Proc. of the AIAA Dynamic Specialist Conference, Long Beach, CA, pp. 261–270.
15.
Smith, S., 1992, “Iterative Use of Direct Matrix Updates: Connectivity and Convergence,” Proc. of the 33rd AIAA Structures, Structural Dynamics and Materials Conference, pp. 1797–1806.
16.
Abdalla
,
M.
,
Grigoriadis
,
K. M.
, and
Zimmerman
,
D.
,
1998
, “
Enhanced Damage Detection Using Alternating Projections
,”
AIAA J.
,
36
, No.
2
, pp.
1305
1311
.
17.
Zimmerman, D., and Santos, J., 1996, “Structural Damage Detection Using Minimum Rank Update Theory and Parameter Estimation,” AIAA/ASME/AHS Adaptive Structures Forum, pp. 168–175.
18.
Hemez
,
F.
, and
Farhat
,
C.
,
1993
, “
Locating and Identifying Structural Damage Using a Sensitivity-Based Model Updating Methodology
,”
AIAA J.
,
31
, No.
12
, pp.
2648
2653
.
19.
Zimmerman, D., Yap, K., and Hasselman, T., 1997, “Evolutionary Approach for Model Refinement,” Proc. 15th International Modal Analysis Conference, Orlando, FL, pp. 551–557.
20.
Zimmerman
,
D.
, and
Kaouk
,
M.
,
1992
, “
Eigenstructure Assignment Approach for Structural Damage Detection
,”
AIAA J.
,
30
, No.
7
, pp.
1848
1855
.
21.
Kaouk
,
M.
, and
Zimmerman
,
D.
,
1994
, “
Structural Damage Assessment Using a Generalized Minimum Rank Perturbation Theory
,”
AIAA J.
,
32
, No.
4
, pp.
836
842
.
22.
Zimmerman
,
D.
, and
Kaouk
,
M.
,
1994
, “
Structural Damage Detection Using a Minimum Rank Update Theory
,”
ASME J. Vibr. Acoust.
,
116
, pp.
222
231
.
23.
Zimmerman
,
D.
,
Kaouk
,
M.
, and
Simmermacher
,
T.
,
1995
, “
Structural Health Monitoring Using Vibration Measurements and Engineering Insight
,”
Trans. ASME
, Special 50th Anniversary Issue,
117
, pp.
214
221
.
24.
Boyd, S., El Ghaoui, L., Feron, E., and Balakrishnan, V., 1994, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia.
25.
Grigoriadis
,
K.
, and
Skelton
,
R.
,
1996
, “
Low-order Control Design for LMI Problems Using Alternating Projection Methods
,”
Automatica
,
32
, No.
8
, pp.
1117
1125
.
26.
Gahinet, P., Nemirovski, A., Laub, A., and Chilali, M., 1995, LMI Control Toolbox, The MATHWORKS Inc.
27.
Pappa
,
R. S.
,
James
III,
G. H.
, and
Zimmerman
,
D. C.
,
1998
, “
Autonomous Modal Identification of the Space Shuttle Tail Rudder
,”
AIAA J. Spacecraft Rockets
,
35
, No.
2
, pp.
163
169
.
28.
Imregun, M., and Ewins, D. J., “An Investigation into Mode Shape Expansion Techniques,” Proc. 11th International Modal Analysis Conference, Kissimmee, FL, pp. 168–175.
You do not currently have access to this content.