A general methodology is presented for investigating ride dynamics of large order vehicle models in a systematic and computationally efficient way. First, the equations of motion of representative vehicle models are set up by applying classical finite element techniques. In the simplest version of these models, the important system parameters are assumed to be constant, leading to linear formulations. Then, more accurate and involved models are examined by including typical nonlinearities in the tires and the shock absorbers of the vehicle suspension. Also, emphasis is placed on taking into account the possibility of temporary separation of a wheel from the ground. These models are strongly nonlinear and as their order increases the existing numerical methodologies for a systematic determination of their dynamics become inefficient to apply. Therefore, the first step of the present methodology is to reduce the dimensions of the original system by applying a component mode synthesis approach. Subsequently, this allows the application of appropriate numerical methodologies for predicting response spectra of the nonlinear models to periodic road excitations. Finally, results obtained by direct integration of the equations of motion are also presented for transient road excitation. In all cases, the accuracy and validity of the applied methodology is verified by comparison with results obtained for the original models.
Skip Nav Destination
Article navigation
July 2002
Technical Papers
Ride Dynamics of Nonlinear Vehicle Models Using Component Mode Synthesis
G. Verros,
G. Verros
Department of Mechanical Engineering, Aristotle University, 54006 Thessaloniki, Greece
Search for other works by this author on:
S. Natsiavas
S. Natsiavas
Department of Mechanical Engineering, Aristotle University, 54006 Thessaloniki, Greece
Search for other works by this author on:
G. Verros
Department of Mechanical Engineering, Aristotle University, 54006 Thessaloniki, Greece
S. Natsiavas
Department of Mechanical Engineering, Aristotle University, 54006 Thessaloniki, Greece
Contributed by the Technical Committee on Vibration and Sound for publication in the JOURNAL OF VIBRATION AND ACOUSTICS. Manuscript received Nov. 1999; revised Jan. 2002. Associate Editor: R. P. S. Han.
J. Vib. Acoust. Jul 2002, 124(3): 427-434 (8 pages)
Published Online: June 12, 2002
Article history
Received:
November 1, 1999
Revised:
January 1, 2002
Online:
June 12, 2002
Citation
Verros , G., and Natsiavas, S. (June 12, 2002). "Ride Dynamics of Nonlinear Vehicle Models Using Component Mode Synthesis ." ASME. J. Vib. Acoust. July 2002; 124(3): 427–434. https://doi.org/10.1115/1.1473828
Download citation file:
Get Email Alerts
Related Articles
Dynamics of Large Scale Mechanical Models Using Multilevel Substructuring
J. Comput. Nonlinear Dynam (January,2007)
Mixed Slip-Deceleration Control in Automotive Braking Systems
J. Dyn. Sys., Meas., Control (January,2007)
Active Vibration Control on a Tire–Wheel Assembly Using Piezoelectric Spatial Modal Filter
J. Vib. Acoust (April,2024)
On the Proper Orthogonal Modes and Normal Modes of Continuous Vibration Systems
J. Vib. Acoust (January,2002)
Related Proceedings Papers
Related Chapters
Engineering Design about Electro-Hydraulic Intelligent Control System of Multi Axle Vehicle Suspension
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)
Rationale for Human-Powered Vehicle Design and Use
Design of Human Powered Vehicles
Manufacturing Processes and Materials
Design of Human Powered Vehicles