A detailed study of the transient nonlinear dynamics of an electrically actuated micron scale beam is presented. A model developed using the Galerkin procedure with normal modes as a basis accounts for the distributed nonlinear electrostatic forces, nonlinear squeezed film damping, and rotational inertia of a mass carried by the beam. Special attention is paid to the dynamics of the beam near instability points. Results generated by the model and confirmed experimentally show that nonlinear damping leads to shrinkage of the spatial region where stable motion is realizable. The voltage that causes dynamic instability, in turn, approaches the static pull-in value.

1.
Ostenberg
,
P. M.
, and
Senturia
,
S. D.
,
1997
, “
M-Test: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures
,”
J. Microelectromech. Syst.
,
6
(
2
), pp.
107
115
.
2.
Senturia, S., D., 2001, Microsystems Design, Kluwer Academic Publishers.
3.
Wang
,
P. K. C.
,
2001
, “
Bifurcation of Equilibria in Micromachined Elastic Structures with Electrostatic Actuation
,”
Int. J. Bifurcation Chaos Appl. Sci. Eng.
,
11
(
2
), pp.
469
482
.
4.
Bochobza-Degani
,
O.
,
Elata
,
D.
, and
Nemirovsky
,
Y.
,
2002
, “
An Efficient DIPIE Algorithm for CAD of Electrostatically Actuated MEMS Devices
,”
J. Microelectromech. Syst.
,
11
(
5
), pp.
612
620
.
5.
Seeger, J., I., and Boser, B., E., 1999, “Dynamics and Control of Parallel-Plate Actuators Beyond the Electrostatic Instability,” Proc. 10th International Conference on Solid-State Sensors and Actuators, Sendai, Japan, pp. 474–477.
6.
Luo
,
A. C. J.
, and
Wang
,
F. Y.
,
2002
, “
Chaotic Motion in a Micor-Electro-Mechanical System with Non-linearity from Capacitors
,”
Communications in Nonlinear Science and Numerical Simulation
,
7
, pp.
31
49
.
7.
Gabbay
,
L. D.
,
Mehner
,
J. E.
, and
Senturia
,
S. D.
,
2000
, “
Computer-Aided Generation of Nonlinear Reduced-Order Dynamic Macromodels-II: Stress-Stiffened Case
,”
J. Microelectromech. Syst.
,
9
(
2
), pp.
270
278
.
8.
Abdel-Rahman
,
E. M.
,
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2002
, “
Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,”
J. Micromech. Microeng.
,
12
(
6
), pp.
759
766
.
9.
McCarthy
,
B.
,
Adams
,
G. G.
,
McGruer
,
N. E.
, and
Potter
,
D.
,
2002
, “
A Dynamic Model, Including Contact Bounce, of an Electrostatically Actuated Microswitch
,”
J. Microelectromech. Syst.
,
11
(
3
), pp.
276
283
.
10.
Yao
,
Z. J.
,
Chen
,
S.
,
Eshelman
,
S.
,
Denniston
,
D.
, and
Glodsmith
,
C.
,
1999
, “
Micromachined Low-Loss Microwave Switches
,”
J. Microelectromech. Syst.
,
8
(
2
), pp.
129
134
.
11.
Furlani
,
E. P.
,
1999
, “
Theory and Simulation of Viscous Damped Reflection Phase Gratings
,”
J. Phys. D
,
32
, pp.
412
416
.
12.
Castaner
,
L. M.
, and
Senturia
,
S. D.
,
1999
, “
Speed-Energy Optimization of Electrostatic Actuators Based on Pull-in
,”
J. Microelectromech. Syst.
,
8
(
3
), pp.
290
298
.
13.
Gabbay
,
L. D.
,
Mehner
,
J. E.
, and
Senturia
,
S. D.
,
2000
, “
Computer-Aided Generation of Nonlinear Reduced-Order Dynamic Macromodels-I: Non-Stress-Stiffened case
,”
J. Microelectromech. Syst.
,
9
(
2
), pp.
262
269
.
14.
Hung
,
E. S.
, and
Senturia
,
S. D.
,
1999
, “
Generating Efficient Dynamical Models for Microelectromechanical Systems from a Few Finite-Element Simulation Runs
,”
J. Microelectromech. Syst.
,
8
(
3
), pp.
280
289
.
15.
Hamrock, B., J., 1994, Fundamentals of Fluid Film Lubrication, McGraw-Hill, New-York.
16.
Blech
,
J. J.
,
1983
, “
On Isothermal Squeeze Films
,”
ASME J. Lubr. Technol.
,
105
, pp.
615
620
.
17.
Pan
,
F.
,
Kubby
,
J.
,
Peters
,
E.
,
Tran
,
A. T.
, and
Mucherjee
,
S.
,
1998
, “
Squeeze Film Damping Effects on the Dynamic Response of a MEMS Torsion Mirror
,”
J. Micromech. Microeng.
,
8
(
3
), pp.
200
208
.
18.
Chang
,
K. M.
,
Lee
,
S. C.
, and
Li
,
S. H.
,
2002
, “
Squeeze Film Damping Effect on a MEMS Torsion Mirror
,”
J. Micromech. Microeng.
,
12
(
5
), pp.
556
561
.
19.
Gupta, K., G., and Senturia, S. D., 1997, “Pull-in Dynamics as a Measure of the Ambient Pressure,” Proc. IEEE Micro Electro Mechanical Systems, IEEE, Piscataway, NJ, pp. 290–294.
20.
Kotera, H., Sakamoto., Y., Hirasawa., T., Shima, S., and Dutton, R., W., 1998, “Dynamic Simulation Method of MEMS Coupling Electrostatic Field, Fluid Dynamics and Membrane Deflection,” Proc. 6th International Conference on Micro Electro, Opto, Mechanical Systems and Components. VDE Verlag, Berlin, Germany, pp. 491–496.
21.
Bhat
,
B. R.
, and
Wagner
,
H.
,
1976
, “
Natural Frequencies of a Uniform Cantilever With a Tip Mass Slender in the Axial Direction
,”
J. Sound Vib.
,
45
(
2
), pp.
304
307
.
22.
Pamidighantam
,
S.
,
Puers
,
R.
,
Baert
,
K.
, and
Tilmans
,
H. A. C.
,
2002
, “
Pull-in Voltage Analysis of Electrostatically Actuated Beam Structures with Fixed-Fixed and Fixed-Free End Conditions
,”
J. Micromech. Microeng.
,
12
(
4
), pp.
458
64
.
23.
Blech, J., J., 1980, “Squeeze Films,” Technion report EEC-111
24.
Pelesko, J., A., and Bernstein, D. H., 2002, Modeling of MEMS and NEMS, Chapman&Hall, A CRC Press Company.
25.
Andrews
,
M.
,
Harris
,
I.
, and
Turner
,
G.
,
1993
, “
A Comparison of Squeeze-Film Theory with Measurements on a Microstructure
,”
Sens. Actuators, A
,
36
, pp.
79
87
.
26.
Jordan, D., W., and Smith, P., 1999, Nonlinear Ordinary Differential Equations, Third Edition, Oxford University Press.
27.
Shampine
,
L. F.
, and
Reichelt
,
M. W.
,
1997
, “
The MATLAB ODE Suite
,”
SIAM J. Sci. Comput. (USA)
,
18
(
1
), pp.
1
22
.
28.
Sharpe
,
W. N.
,
Jackson
,
K. M.
,
Hemker
,
K. J.
, and
Xie
,
Z.
,
2001
, “
Effect of Specimen Size on Young’s Modulus and Fracture Strength of Polysilicon
,”
J. Microelectromech. Syst.
,
10
(
3
), pp.
317
326
.
29.
O’Brien, G., J., Monk., D., J., and Liwei, L., 2001, “MEMS Cantilever Beam Electrostatic Pull-in Model,” Proc. SPIE Design, Characterization, and Packaging for MEMS and Microelectronics Conference, Vol. 4593, Adelaide, SA, US, pp. 31–41.
You do not currently have access to this content.