A detailed study of the transient nonlinear dynamics of an electrically actuated micron scale beam is presented. A model developed using the Galerkin procedure with normal modes as a basis accounts for the distributed nonlinear electrostatic forces, nonlinear squeezed film damping, and rotational inertia of a mass carried by the beam. Special attention is paid to the dynamics of the beam near instability points. Results generated by the model and confirmed experimentally show that nonlinear damping leads to shrinkage of the spatial region where stable motion is realizable. The voltage that causes dynamic instability, in turn, approaches the static pull-in value.
Issue Section:
Technical Papers
1.
Ostenberg
, P. M.
, and Senturia
, S. D.
, 1997
, “M-Test: A Test Chip for MEMS Material Property Measurement Using Electrostatically Actuated Test Structures
,” J. Microelectromech. Syst.
, 6
(2
), pp. 107
–115
.2.
Senturia, S., D., 2001, Microsystems Design, Kluwer Academic Publishers.
3.
Wang
, P. K. C.
, 2001
, “Bifurcation of Equilibria in Micromachined Elastic Structures with Electrostatic Actuation
,” Int. J. Bifurcation Chaos Appl. Sci. Eng.
, 11
(2
), pp. 469
–482
.4.
Bochobza-Degani
, O.
, Elata
, D.
, and Nemirovsky
, Y.
, 2002
, “An Efficient DIPIE Algorithm for CAD of Electrostatically Actuated MEMS Devices
,” J. Microelectromech. Syst.
, 11
(5
), pp. 612
–620
.5.
Seeger, J., I., and Boser, B., E., 1999, “Dynamics and Control of Parallel-Plate Actuators Beyond the Electrostatic Instability,” Proc. 10th International Conference on Solid-State Sensors and Actuators, Sendai, Japan, pp. 474–477.
6.
Luo
, A. C. J.
, and Wang
, F. Y.
, 2002
, “Chaotic Motion in a Micor-Electro-Mechanical System with Non-linearity from Capacitors
,” Communications in Nonlinear Science and Numerical Simulation
, 7
, pp. 31
–49
.7.
Gabbay
, L. D.
, Mehner
, J. E.
, and Senturia
, S. D.
, 2000
, “Computer-Aided Generation of Nonlinear Reduced-Order Dynamic Macromodels-II: Stress-Stiffened Case
,” J. Microelectromech. Syst.
, 9
(2
), pp. 270
–278
.8.
Abdel-Rahman
, E. M.
, Younis
, M. I.
, and Nayfeh
, A. H.
, 2002
, “Characterization of the Mechanical Behavior of an Electrically Actuated Microbeam
,” J. Micromech. Microeng.
, 12
(6
), pp. 759
–766
.9.
McCarthy
, B.
, Adams
, G. G.
, McGruer
, N. E.
, and Potter
, D.
, 2002
, “A Dynamic Model, Including Contact Bounce, of an Electrostatically Actuated Microswitch
,” J. Microelectromech. Syst.
, 11
(3
), pp. 276
–283
.10.
Yao
, Z. J.
, Chen
, S.
, Eshelman
, S.
, Denniston
, D.
, and Glodsmith
, C.
, 1999
, “Micromachined Low-Loss Microwave Switches
,” J. Microelectromech. Syst.
, 8
(2
), pp. 129
–134
.11.
Furlani
, E. P.
, 1999
, “Theory and Simulation of Viscous Damped Reflection Phase Gratings
,” J. Phys. D
, 32
, pp. 412
–416
.12.
Castaner
, L. M.
, and Senturia
, S. D.
, 1999
, “Speed-Energy Optimization of Electrostatic Actuators Based on Pull-in
,” J. Microelectromech. Syst.
, 8
(3
), pp. 290
–298
.13.
Gabbay
, L. D.
, Mehner
, J. E.
, and Senturia
, S. D.
, 2000
, “Computer-Aided Generation of Nonlinear Reduced-Order Dynamic Macromodels-I: Non-Stress-Stiffened case
,” J. Microelectromech. Syst.
, 9
(2
), pp. 262
–269
.14.
Hung
, E. S.
, and Senturia
, S. D.
, 1999
, “Generating Efficient Dynamical Models for Microelectromechanical Systems from a Few Finite-Element Simulation Runs
,” J. Microelectromech. Syst.
, 8
(3
), pp. 280
–289
.15.
Hamrock, B., J., 1994, Fundamentals of Fluid Film Lubrication, McGraw-Hill, New-York.
16.
Blech
, J. J.
, 1983
, “On Isothermal Squeeze Films
,” ASME J. Lubr. Technol.
, 105
, pp. 615
–620
.17.
Pan
, F.
, Kubby
, J.
, Peters
, E.
, Tran
, A. T.
, and Mucherjee
, S.
, 1998
, “Squeeze Film Damping Effects on the Dynamic Response of a MEMS Torsion Mirror
,” J. Micromech. Microeng.
, 8
(3
), pp. 200
–208
.18.
Chang
, K. M.
, Lee
, S. C.
, and Li
, S. H.
, 2002
, “Squeeze Film Damping Effect on a MEMS Torsion Mirror
,” J. Micromech. Microeng.
, 12
(5
), pp. 556
–561
.19.
Gupta, K., G., and Senturia, S. D., 1997, “Pull-in Dynamics as a Measure of the Ambient Pressure,” Proc. IEEE Micro Electro Mechanical Systems, IEEE, Piscataway, NJ, pp. 290–294.
20.
Kotera, H., Sakamoto., Y., Hirasawa., T., Shima, S., and Dutton, R., W., 1998, “Dynamic Simulation Method of MEMS Coupling Electrostatic Field, Fluid Dynamics and Membrane Deflection,” Proc. 6th International Conference on Micro Electro, Opto, Mechanical Systems and Components. VDE Verlag, Berlin, Germany, pp. 491–496.
21.
Bhat
, B. R.
, and Wagner
, H.
, 1976
, “Natural Frequencies of a Uniform Cantilever With a Tip Mass Slender in the Axial Direction
,” J. Sound Vib.
, 45
(2
), pp. 304
–307
.22.
Pamidighantam
, S.
, Puers
, R.
, Baert
, K.
, and Tilmans
, H. A. C.
, 2002
, “Pull-in Voltage Analysis of Electrostatically Actuated Beam Structures with Fixed-Fixed and Fixed-Free End Conditions
,” J. Micromech. Microeng.
, 12
(4
), pp. 458
–64
.23.
Blech, J., J., 1980, “Squeeze Films,” Technion report EEC-111
24.
Pelesko, J., A., and Bernstein, D. H., 2002, Modeling of MEMS and NEMS, Chapman&Hall, A CRC Press Company.
25.
Andrews
, M.
, Harris
, I.
, and Turner
, G.
, 1993
, “A Comparison of Squeeze-Film Theory with Measurements on a Microstructure
,” Sens. Actuators, A
, 36
, pp. 79
–87
.26.
Jordan, D., W., and Smith, P., 1999, Nonlinear Ordinary Differential Equations, Third Edition, Oxford University Press.
27.
Shampine
, L. F.
, and Reichelt
, M. W.
, 1997
, “The MATLAB ODE Suite
,” SIAM J. Sci. Comput. (USA)
, 18
(1
), pp. 1
–22
.28.
Sharpe
, W. N.
, Jackson
, K. M.
, Hemker
, K. J.
, and Xie
, Z.
, 2001
, “Effect of Specimen Size on Young’s Modulus and Fracture Strength of Polysilicon
,” J. Microelectromech. Syst.
, 10
(3
), pp. 317
–326
.29.
O’Brien, G., J., Monk., D., J., and Liwei, L., 2001, “MEMS Cantilever Beam Electrostatic Pull-in Model,” Proc. SPIE Design, Characterization, and Packaging for MEMS and Microelectronics Conference, Vol. 4593, Adelaide, SA, US, pp. 31–41.
Copyright © 2004
by ASME
You do not currently have access to this content.