This paper presents a general analytical technique for stochastic analysis of a continuous beam whose damping characteristic is described using a fractional derivative model. In this formulation, the normal-mode approach is used to reduce the differential equation of a fractionally damped continuous beam into a set of infinite equations, each of which describes the dynamics of a fractionally damped spring-mass-damper system. A Laplace transform technique is used to obtain the fractional Green’s function and a Duhamel integral-type expression for the system’s response. The response expression contains two parts, namely, zero state and zero input. For a stochastic analysis, the input force is treated as a random process with specified mean and correlation functions. An expectation operator is applied on a set of expressions to obtain the stochastic characteristics of the system. Closed-form stochastic response expressions are obtained for white noise for two cases, and numerical results are presented for one of the cases. The approach can be extended to all those systems for which the existence of normal modes is guaranteed.

1.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
(
5
), pp.
741
748
.
2.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus of Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.
3.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1985
, “
Fractional Calculus in the Transient Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
23
(6), pp.
918
925
.
4.
Koeller
,
R. C.
,
1984
, “
Application of Fractional Calculus to the Theory of Viscoelasticity
,”
ASME J. Appl. Mech.
,
51
, pp.
299
307
.
5.
Mainardi
,
F.
,
1994
, “
Fractional Relaxation in Anelastic Solids
,”
J. Alloys Compd.
,
211-1
, pp.
534
538
.
6.
Shen
,
K. L.
, and
Soong
,
T. T.
,
1995
, “
Modeling of Viscoelastic Dampers for Structural Applications
,”
J. Eng. Mech.
,
121
, pp.
694
701
.
7.
Pritz
,
T.
,
1996
, “
Analysis of Four-Parameter Fractional Derivative Model of Real Solid Materials
,”
J. Sound Vib.
,
195
, pp.
103
115
.
8.
Papoulia
,
K. D.
, and
Kelly
,
J. M.
,
1997
, “
Visco-Hyperelastic Model for Filled Rubbers Used in Vibration Isolation
,”
ASME J. Eng. Mater. Technol.
,
119
, pp.
292
297
.
9.
Friedrich, C., Schiessel, H., and Blumen, A., 1999, “Constitutive Behavior Modeling and Fractional Derivatives,” Advances in the Flow and Rheology of Non-Newtonian Fluids—Part A, D. A. Siginer, R. P. Chabra, and De Kee, eds., Elsevier, Amsterdam, pp. 429–466.
10.
Koh
,
C. G.
, and
Kelly
,
J. M.
,
1990
, “
Application of Fractional Derivatives to Seismic Analysis of Base-Isolated Models
,”
Earthquake Eng. Struct. Dyn.
,
19
, pp.
229
241
.
11.
Makris
,
N.
, and
Constantinou
,
M. C.
,
1992
, “
Spring-Viscous Damper Systems for Combined Seismic and Vibration Isolation
,”
Earthquake Eng. Struct. Dyn.
,
21
, pp.
649
664
.
12.
Lee
,
H. H.
, and
Tsai
,
C. S.
,
1994
, “
Analytical Model for Viscoelastic Dampers for Seismic Mitigation of Structures
,”
Comput. Struct.
,
50
(
1
), pp.
111
121
.
13.
Gorenflo, R., and Mainardi, F., 1997, “Fractional Calculus: Integral and Differential Equations of Fractional Order,” Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, eds., Springer-Verlag-Wien New York, pp. 223–276.
14.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
1997
, “
Applications of Fractional Calculus to Dynamic Problems of Linear and Nonlinear Hereditary Mechanics of Solids
,”
Appl. Mech. Rev.
,
50
(
1
), pp.
15
67
.
15.
Jones, D. I. G., 2001, Handbook of Viscoelastic Vibration Damping, Wiley, New York.
16.
Mainardi, F., 1997, “Fractional Calculus: Some Basic Problems in Continuum and Statistical Mechanics,” Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi, eds., Springer-Verlag New York, pp. 291–348.
17.
Spanos
,
P. D.
, and
Zeldin
,
B. A.
,
1997
, “
Random Vibration of Systems With Frequency—Dependent Parameters or Fractional Derivatives
,”
J. Eng. Mech.
,
123
(
3
), pp.
290
292
.
18.
Agrawal
,
O. P.
,
2002
, “
Stochastic Analysis of a 1-D System With Fractional Damping of Order 1/2
,”
ASME J. Vibr. Acoust.
,
124
, pp.
454
460
.
19.
Suarez
,
L. E.
, and
Shokooh
,
A.
,
1997
, “
An Eigenvector Expansion Method for the Solution of Motion Containing Fractional Derivatives
,”
ASME J. Appl. Mech.
,
64
, pp.
629
635
.
20.
Metzler
,
R.
, and
Klafter
,
J.
,
2000
, “
The Random Walk’s Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
,
339
(
1
), pp.
1
77
.
21.
Agrawal
,
O. P.
,
2003
, “
Response of a Diffusion-Wave System Subjected to Deterministic and Stochastic Fields
,”
Z. Angew. Math. Mech.
,
4
, pp.
265
274
.
22.
Oldham, K. B., and Spanier, J., 1974, The Fractional Calculus, Academic Press, New York.
23.
Miller, K. S., and Ross, B., 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York.
24.
Podlubny, I., 1999, Fractional Differential Equations, Academic Press, New York.
25.
Lin, Y. K., 1965, Probabilistic Theory of Structural Dynamics, McGraw-Hill, New York.
26.
Nigam, N. C., 1983, Introduction to Random Vibrations, MIT Press, Cambridge, MA.
27.
Eldred
,
L. B.
,
Baker
,
W. P.
, and
Palazotto
,
A. N.
,
1996
, “
Numerical Applications of Fractional Derivative Model Constitutive Relations for Viscoelatic Materials
,”
Comput. Struct.
,
60
(
6
), pp.
875
882
.
28.
Lixia, Y., and Agrawal, O. P., 1998, “A Numerical Scheme for Dynamic Systems Containing Fractional Derivatives,” Proc. 1998 ASME Design Engineering Technical Conferences, September, Atlanta, ASME, New York.
29.
Shabana, A. A., 1991, Theory of Vibration, Volume II: Discrete and Continuous Systems, Springer-Verlag, New York.
You do not currently have access to this content.