This paper investigates the use of dyadic wavelets for the control of multifrequency rotor vibration. A scheme for real-time control of rotor vibration using an adaptive wavelet decomposition and reconstruction of time-varying signals is proposed. Quasi-periodic control forces are constructed adaptively in real-time to optimally cancel vibration produced by nonsmooth disturbance forces. Controller adaptive gains can be derived using a model-based synthesis or from system identification routines. The controller is implemented on a flexible rotor system incorporating two radial magnetic bearings, with standard proportional-integral-derivative control employed in a parallel feedback loop for rotor levitation. An experimental investigation of controller performance is used to deduce the best choice of wavelet basis for various operating conditions. These include steady synchronous forcing, step changes in synchronous forcing and multifrequency forcing produced by a rotor impact mechanism.

1.
Burrows
,
C. R.
, and
Sahinkaya
,
M. N.
, 1983, “
Vibration Control of Multi-Mode Rotor Bearing Systems
,”
Proc. R. Soc. London, Ser. A
1364-5021,
386
, pp.
77
94
.
2.
Keogh
,
P. S.
,
Burrows
,
C. R.
, and
Berry
,
T.
, 1996, “
On-Line Controller Implementation for Attenuation of Synchronous and Transient Rotor Vibration
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
118
, pp.
315
321
.
3.
Lum
,
K.-W.
,
Coppola
,
V. T.
, and
Bernstein
,
D. S.
, 1996, “
Adaptive Autocentering Control for an Active Magnetic Bearing Supporting a Rotor with Unknown Mass Imbalance
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
4
(
5
), pp.
587
597
.
4.
Knospe
,
C.
,
Hope
,
R.
,
Fedigan
,
S.
, and
Williams
,
R.
, 1995, “
Experiments in the Control of Unbalanced Response Using Magnetic Bearings
,”
Mechatronics
0957-4158,
5
, pp.
385
400
.
5.
Manchala
,
D. W.
,
Palazzolo
,
A. B.
,
Lin
,
,
Kasak
,
A. K.
,
Montague
,
J.
, and
Brown
,
G. V.
, 1997, “
Constrained Quadratic Programming Active Control of Rotating Mass Imbalance
,”
J. Sound Vib.
0022-460X,
205
, pp.
561
580
.
6.
Cole
,
M. O. T.
, and
Keogh
,
P. S.
, 2003, “
Rotor Vibration With Auxiliary Bearing Contact in Magnetic Bearing Systems, Part 2: Robust Synchronous Control to Restore Rotor Position
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
0954-4062,
217
(
4
), pp.
393
409
.
7.
Liu
,
Z.
,
Nonami
,
K.
, and
Ariga
,
Y.
, 2002, “
Adaptive Unbalance Vibration Control of Magnetic Bearing Systems with Rotational Synchronizing and Asynchronizing Harmonic Disturbance
,”
JSME Int. J., Ser. C
1340-8062,
45
(
1
), pp.
142
149
.
8.
Cole
,
M. O.T.
,
Keogh
,
P. S.
, and
Burrows
,
C. R.
, 2003, “
Robust Control of Multiple Discrete Frequency Vibration Components in Rotor—Magnetic Bearing Systems
,”
JSME Int. J., Ser. C
1340-8062,
46
(
3
), pp.
891
899
.
9.
Mallat
,
S. A.
, 1999,
A Wavelet Tour of Signal Processing
,
Academic Press
, London.
10.
Newland
,
D. E.
, 1993, “
Harmonic Wavelet Analysis
,”
Proc. R. Soc. London, Ser. A
1364-5021,
443
, pp.
203
225
.
11.
Chancey
,
V. C.
, and
Flowers
,
G. T.
, 2001, “
Identification of Transient Vibration Characteristics Using Absolute Harmonic Wavelet Coefficients
,”
J. Vib. Control
1077-5463,
7
, pp.
1175
1193
.
12.
Nelson
,
H. D.
, and
McVaugh
,
J. M.
, 1976, “
The Dynamics of Rotor-Bearing Systems Using Finite Elements
,”
ASME J. Eng. Ind.
0022-0817,
98
, pp.
593
699
.
13.
Strang
,
G.
, and
Nguyen
,
T.
, 1996,
Wavelets and Filter Banks
,
Wellesley-Cambridge Press
, Wellesley, MA.
14.
Daubechies
,
I.
, 1988, “
Orthonormal Bases of Compactly Supported Wavelets
,”
Commun. Pure Appl. Math.
0010-3640,
41
, pp.
909
996
.
15.
Mallat
,
S. A.
, 1989, “
Theory for Multiresolution Signal Decomposition: The Wavelet Representation
,”
IEEE Trans. Pattern Anal. Mach. Intell.
0162-8828
11
(
7
), pp.
674
693
.
You do not currently have access to this content.