One of the most important tasks in pretest analysis and modal survey planning is the selection of target modes. The target modes are those mode shapes that are determined to be dynamically important using some definition. While there are many measures of dynamic importance, one of the measures that has been of greatest interest to structural dynamicists, is the contribution of each mode to the dynamic loads at an interface. Dynamically important modes contribute significantly to the interface loads and must be retained in any reduced analytical representation. These modes must be identified during a ground vibration test to validate the corresponding finite element model. Structural dynamicists have used interface load based effective mass measures to efficiently identify target modes for constrained structures. The advantage of these measures of dynamic importance is that they are absolute, in contrast to other measures that only indicate the importance of one mode shape relative to another. However, in many situations, especially in aerospace applications, structures must be tested in a free–free configuration. In the case of free–free elastic modes, the effective mass values are zero, making them useless measures of dynamic importance. This paper presents a new effective mass like measure of absolute dynamic importance that can be applied to free–free structures. The new method is derived based upon the free–free modal equations of motion. The approach is shown to be directly related to ranking mode shapes based on approximate balanced singular values. But, unlike the approximate balanced singular value approach, it is an absolute measure of importance. A numerical example of a general spacecraft system is presented to illustrate the application of the new technique. Dynamically important mode shapes were easily identified for modal acceleration, velocity, and displacement output. The new method provides an efficient technique for selecting target modes for a modal vibration test, or the reduction of a modal based analytical model to the dynamically important mode shapes.
Skip Nav Destination
e-mail: kammer@engr.wisc.edu
Article navigation
February 2007
Technical Papers
A Generalization of Effective Mass for Selecting Free–Free Target Modes
Daniel C. Kammer,
Daniel C. Kammer
Department of Engineering Physics,
e-mail: kammer@engr.wisc.edu
University of Wisconsin
, 1500 Engineering Drive, Madison, WI 53706
Search for other works by this author on:
Joseph Cessna,
Joseph Cessna
Department of Engineering Physics,
University of Wisconsin
, 1500 Engineering Drive, Madison, WI 53706
Search for other works by this author on:
Andrew Kostuch
Andrew Kostuch
Quartus Engineering Inc.
, 10251 Vista Sorrento Pkwy, San Diego, CA 92121
Search for other works by this author on:
Daniel C. Kammer
Department of Engineering Physics,
University of Wisconsin
, 1500 Engineering Drive, Madison, WI 53706e-mail: kammer@engr.wisc.edu
Joseph Cessna
Department of Engineering Physics,
University of Wisconsin
, 1500 Engineering Drive, Madison, WI 53706
Andrew Kostuch
Quartus Engineering Inc.
, 10251 Vista Sorrento Pkwy, San Diego, CA 92121J. Vib. Acoust. Feb 2007, 129(1): 121-127 (7 pages)
Published Online: October 5, 2006
Article history
Received:
December 21, 2005
Revised:
October 5, 2006
Citation
Kammer, D. C., Cessna, J., and Kostuch, A. (October 5, 2006). "A Generalization of Effective Mass for Selecting Free–Free Target Modes." ASME. J. Vib. Acoust. February 2007; 129(1): 121–127. https://doi.org/10.1115/1.2424980
Download citation file:
Get Email Alerts
Cited By
Comprehensive Analysis of Input Shaping Techniques for a Chain Suspended From an Overhead Crane
J. Vib. Acoust (August 2024)
Related Articles
Application of Modal Identification Methods to Spatial Structure Using Field Measurement Data
J. Vib. Acoust (June,2009)
Frequency Band Averaging of Spectral Densities for Updating Finite Element Models
J. Vib. Acoust (August,2009)
A Linearized Theory on Ground-Based Vibration Response of Rotating Asymmetric Flexible Structures
J. Vib. Acoust (June,2006)
Dynamics of Cricket Sound Production
J. Vib. Acoust (August,2015)
Related Proceedings Papers
Related Chapters
Data Tabulations
Structural Shear Joints: Analyses, Properties and Design for Repeat Loading
Transverse Free Vibration Analysis of Hybrid SPR Steel Joints
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Structural Damage Detection by Integrating Neural Networks and Vibration Modal Analysis
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)