Impedance-based structural health monitoring uses collocated piezoelectric transducers to locally excite a structure at high frequencies. The response of the structure is measured by the same transducer. Changes in this response indicate damage. Frequency range selection for monitoring with impedance-based structural health monitoring has, in the past, been done by trial and error methods or has been selected after analysis by engineers familiar with the method. This study aims to determine if, in future applications, it is possible to automatically select preferred frequency ranges based on sensor characteristics, perhaps even before installing the system. In addition, the paper demonstrates a method for determining preferable frequency ranges for monitoring. The study examines the analysis of the measurement change through a damage metric and relates the results of the analysis to characteristics of the measurement. Specifically, outlier detection concepts were used to statistically evaluate the damage detection ability of the transducers at various frequency ranges. The variation in undamaged measurements is compared to the amount of change in the measurement upon various levels of damage. Testing was performed with both solid piezoceramic transducers and macrofiber composite piezoelectric devices of different sizes bonded to aluminum and fiber reinforced composite structures. The results indicate that characteristics of the structure, not the sensor alone, determine the optimal monitoring frequency ranges.

1.
Liang
,
C.
,
Sun
,
F.
, and
Rogers
,
C. A.
, 1994, “
Coupled Electromechanical Analysis of Adaptive Material System: Determination of Actuator Power Consumption and System Energy Transfer
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
5
, pp.
12
20
.
2.
Liang
,
C.
,
Sun
,
F.
, and
Rogers
,
C.
, 1994, “
An Impedance Method for Dynamic Analysis of Active Materials Systems
,”
ASME J. Vibr. Acoust.
0739-3717,
116
, pp.
121
128
.
3.
Sun
,
F.
,
Liang
,
C.
, and
Rogers
,
C. A.
, 1994, “
Structural Modal Analysis Using Collocated Peizoelectric Actuators/Sensors: An Electromechanical Approach
,”
Proceedings of Smart Structures and Materials 1994: Smart Structures and Intelligent Systems
, Vol.
2190
, pp.
238
249
.
4.
Park
,
G.
,
Sohn
,
H.
,
Farrar
,
C.
, and
Inman
,
D.
, 2003, “
Overview of Piezoelectric Impedance-Based Health Monitoring and Path Forward
,”
Shock Vib. Dig.
0583-1024,
35
(
6
), pp.
451
463
.
5.
Sun
,
F.
,
Chaudhry
,
Z.
,
Liang
,
C.
, and
Rogers
,
C. A.
, 1995, “
Truss Structure Integrity Identification Using PZT Sensor-Actuator
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
6
, pp.
134
139
.
6.
Park
,
G.
,
Cudney
,
H.
, and
Inman
,
D. J.
, 2000, “
Impedance-Based Health Monitoring of Civil Structural Components
,”
J. Infrastruct. Syst.
1076-0342,
6
(
4
), pp.
153
160
.
7.
Giurgiutiu
,
V.
,
Zagrai
,
A.
, and
Bao
,
J. J.
, 2002, “
Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring
,”
Struct. Health Monit.
1475-9217,
1
(
1
), pp.
41
61
.
8.
Berman
,
J.
,
Quattrone
,
R.
,
Averbuch
,
A.
,
Lalande
,
F.
,
Cudney
,
H.
,
Raju
,
V.
, and
Cohen
,
G. L.
, 1999, “
Piezoelectric Patch Sensors for Structural Integrity Monitoring of Composite-Upgraded Masonry and Concrete Structures
,” U.S. Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, IL, CERL Technical Report No. 99/72.
9.
Peairs
,
D. M.
,
Grisso
,
B. L.
,
Inman
,
D. J.
,
Page
,
K. R.
,
Athman
,
R.
, and
Margasahayam
,
R. N.
, 2003, “
Proof-of-Concept Application of Impedance-Based Monitoring on Space Shuttle Ground Structures
,” National Aeronautics and Space Administration, Kennedy Space Center, FL, NASA Report No. TM-2003–211193.
10.
Worden
,
K.
,
Allen
,
D. W.
,
Sohn
,
H.
,
Stinemates
,
D. W.
, and
Farrar
,
C. R.
, 2002, “
Extreme Value Statistics for Damage Detection in Mechanical Structures
,” Los Alamos National Laboratory, Los Alamos, NM, LANL Report No. LA-13905-MS (available at http://www.lanl.gov/projects/ncsd/publications.htmhttp://www.lanl.gov/projects/ncsd/publications.htm).
11.
Todd
,
M.
,
Trickey
,
S.
,
Nichols
,
J.
, and
Seaver
,
M.
, 2001, “
Implementing Statistical Process Control Methods for the Assessment of Damage in a Simple Plate Structure
,”
Proceedings of the Third International Workshop on Structural Health Monitoring: The Demands and Challenges
,
Stanford
,
CA
, pp.
1249
1258
.
12.
Gyekenyesi
,
A. L.
,
Martin
,
R. E.
,
Sawicki
,
J. T.
, and
Baaklini
,
G. Y.
, 2005, “
Damage Assessment of Aerospace Structural Components by Impedance Based Health Monitoring
,” National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, NASA Report No. TM-2005–213579.
13.
Simmers
,
G. E.
, 2005, “
Impedance-Based Structural Health Monitoring to Detect Corrosion
,” MS thesis, Virginia Polytechnic Institute and State University.
14.
Nokes
,
J.
, and
Cloud
,
G.
, 1993, “
The Application of Interferometric Techniques to the Nondestructive Inspection of Fiber Reinforced Materials
,”
Exp. Mech.
0014-4851,
33
(
4
), pp.
314
319
.
15.
Pohl
,
J.
,
Herold
,
S.
,
Mook
,
G.
, and
Michel
,
F.
, 2001, “
Damage Detection in Smart CFRP Composites Using Impedance Spectroscopy
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
834
842
.
16.
Bois
,
C.
, and
Hochard
,
C.
, 2002, “
Measurement and Modeling for the Monitoring of Damaged Laminate Composite Structures
,”
Proceedings of the First European Workshop on Structural Health Monitoring
, pp.
425
432
.
17.
Grisso
,
B.
,
Peairs
,
D.
, and
Inman
,
D.
, 2004, “
Impedance-Based Health Monitoring of Composites
,”
Proceedings of the International Modal Analysis Conference (IMAC) XXII
,
Dearborn, MI
, Jan. 26–29.
18.
Grisso
,
B.
,
Peairs
,
D.
, and
Inman
,
D.
, 2004, “
Detecting Damage in Graphite/Epoxy Composites Using Impedance-Based Structural Health Monitoring
,”
Applied Mechanics and Materials: Advances in Experimental Mechanics
,
1–2
, pp.
185
190
.
19.
Tarazaga
,
P. A.
,
Wilkie
,
W. K.
, and
Inman
,
D. J.
, 2006, “
Structural Health Monitoring of the Space Rigidizable-Inflatable Booms
,”
Proceedings of the International Modal Analysis Conference (IMAC) XXIV
,
St. Louis, MO
, Jan. 30–Feb. 2.
20.
Wilkie
,
W. K.
,
Bryant
,
R. G.
,
High
,
J. W.
,
Fox
,
R. L.
,
Hellbaum
,
R. F.
,
Jalink
,
A.
, Jr.
,
Little
,
B. D.
, and
Mirick
,
P. H.
, 2000, “
Low-Cost Piezocomposite Actuator for Structural Control Applications
,”
Proceedings of SPIE’s Seventh International Symposium on Smart Structures and Materials
,
Newport Beach, CA
, Mar. 5–9.
21.
Harrah
,
L.
,
Hoyt
,
A.
,
Haight
,
A. E.
,
Sprouse
,
M. R.
,
Allred
,
R. E.
,
McElroy
,
P. M.
,
Scarborough
,
S.
, and
Dixit
,
A.
, 2004,
Proceedings of the 45th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference (SDM)
,
Palm Springs
,
CA
, Apr. 19–22.
22.
Sodano
,
H.
,
Park
,
G.
, and
Inman
,
D. J.
, 2004, “
An Investigation Into Performance of Macro-Fiber Composites for Sensing and Structural Vibration Applications
,”
Mech. Syst. Signal Process.
0888-3270
18
, pp.
683
697
.
23.
Chmielewski
,
A. B.
, 2001, “
Overview of Gossamer Structures
,”
Gossamer Spacecraft: Membrane and Inflatable Structures Technology for Space Applications (Progress in Astronautics and Aeronautics)
,
C. H.
Jenkins
, ed.,
AIAA
,
Reston, VA
, pp.
30
32
.
24.
Tarazaga
,
P. A.
,
Inman
,
D. J.
, and
Wilkie
,
W. K.
, 2007, “
Control of Space Rigidizable-Inflatable Boom Using Macro-Fiber Composite
,”
J. Vib. Control
1077-5463,
13
(
7
), pp.
935
950
.
25.
Bent
,
A.
,
Hagood
,
A.
, and
Nesbitt
,
W.
, 1997, “
Piezoelectric Fiber Composites With Interdigitated Electrodes
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
8
(
11
), pp.
903
919
.
26.
Tarazaga
,
P. A.
,
Peairs
,
D. M.
,
Inman
,
D. J.
, and
Wilkie
,
W. K.
, 2006, “
Structural Health Monitoring of an Inflatable Boom on Simulated Debris/Meteorite Impact
,”
Proceedings of SPIE’s 11th International Symposium on Nondestructive Evaluation for Health Monitoring and Diagnostics
,
San Diego, CA
, Feb. 26–Mar. 2.
27.
Wears
,
R. L.
, 2002, “
Advanced Statistics: Statistical Methods for Analyzing Cluster and Cluster-Randomized Data
,”
Acad. Emerg. Med.
1069-6563,
9
(
4
), pp.
330
341
.
You do not currently have access to this content.