The concept of using sensitivity-enhancing feedback control to improve the performance of frequency-shift-based structural damage identification has been recently explored. In previous studies, however, the feedback controller is designed to alter only the closed-loop eigenvalues, and the effect of closed-loop eigenvectors on the sensitivity enhancement performance has not been considered. In this research, it is shown that the sensitivity of the natural frequency shift to the damage in a multi-degree-of-freedom structure can be significantly influenced by the placement of both the eigenvalues and the eigenvectors. A constrained optimization problem is formulated to find the optimal assignment of both the closed-loop eigenvalues and eigenvectors, and then an optimal sensitivity-enhancing control is designed to achieve the desired closed-loop eigenstructure. Another advantage of this scheme is that the dataset of frequency measurement for damage identification can be enlarged by utilizing a series of closed-loop controls, which can be realized by activating different combinations of actuators in the system. Therefore, by using this proposed idea of multiple sensitivity-enhancing feedback controls, we can simultaneously address the two major limitations of frequency-shift-based damage identification: the low sensitivity of frequency shift to damage effects and the deficiency of frequency measurement data. A series of case studies are performed. It is demonstrated that the sensitivity of natural frequency shift to stiffness reduction can be significantly enhanced by using the designed sensitivity-enhancing feedback control, where the optimal placement of closed-loop eigenvectors plays a very important role. It is further verified that such sensitivity enhancement can directly benefit the damage identification accuracy and robustness.

1.
Doebling
,
S. W.
,
Farrar
,
C. R.
, and
Prime
,
M. B.
, 1998, “
A Summary Review of Vibration-Based Damage Identification Methods
,”
Shock Vib. Dig.
0583-1024,
30
(
2
), pp.
91
105
.
2.
Doebling
,
S. W.
,
Farrar
,
C. R.
,
Prime
,
M. B.
, and
Shevitz
,
D. W.
, 1996, “
Damage Identification and Health Monitoring of Structural and Mechanical Systems from Changes in their Vibration Characteristics: A Literature Review
,” Los Alamos National Laboratory Report No. LA-13070-MS, Los Alamos, NM.
3.
Cornwell
,
P.
,
Kan
,
M.
,
Carlson
,
B.
,
Hoerst
,
L. B.
,
Doebling
,
S. W.
, and
Farrar
,
C. R.
, 1998, “
Comparative Study of Vibartion-Based Damage Identification Algorithms
,”
Proc. of 16th International Modal Analysis Conference
, Part 2,
Santa Barbara, CA
, Society for Experimental Mechanics, Inc., Bethel, CT, pp.
1710
1716
.
4.
Ness
,
S.
, and
Sherlock
,
C. N.
, 1996,
Nondestructive Testing Handbook
,
American Society for Nondestructive Testing
,
Columbus, OH
, Vol.
10
..
5.
Salawu
,
O. S.
, 1997, “
Detection of Structural Damage Through Changes in Frequency: A Review
,”
Polym. Polym. Compos.
0967-3911,
19
(
9
), pp.
718
723
.
6.
Dascotte
,
E.
, 1990, “
Practical Application of Finite Element Tuning Using Experimental Modal Data
,”
Proc. of 8th International Modal Analysis Conference
, Kissimmee, FL, Society for Experimental Mechanics, Inc., Bethel, CT, pp.
1032
1037
.
7.
Friswell
,
M. I.
, and
Penny
,
J. E. T.
, 1997, “
The Practical Limits of Damage Detection and Location Using Vibration Data
,”
Proc. of the 11th VPI&SU Symposium on Structural Dynamics and Control
, Blacksburg, VA, Society for Experimental Mechanics, Inc., Bethel, CT, pp.
31
40
.
8.
Stubbs
,
N.
, and
Osegueda
,
R.
, 1990, “
Global Non-Destructive Damage Evaluation in Solids
,”
Int. J. Anal. Exp. Modal Anal.
0886-9367,
5
(
2
), pp.
67
79
.
9.
Stubbs
,
N.
, and
Osegueda
,
R.
, 1990, “
Global Damage Detection in Solids-Experimental Verification
,”
Int. J. Anal. Exp. Modal Anal.
0886-9367,
5
(
2
), pp.
81
97
.
10.
Richardson
,
M. H.
, and
Mannan
,
M. A.
, 1992, “
Remote Detection and Location of Structural Faults Using Modal Parameters
,”
Proc. of the 10th International Modal Analysis Conference
, San Diego, Society for Experimental Mechanics, Inc., Bethel, CT, pp.
502
507
.
11.
Trivailo
,
P.
,
Plotnikova
,
L. A.
, and
Wood
,
L. A.
, 1997, “
Enhanced Parameter Identification for Damage Detection and Structural Integrity Assessment Using Twin Structures
,”
5th International Congress on Sound and Vibration
, Adelaide, Australia, pp.
1733
1741
.
12.
Cha
,
P. D.
, and
Gu
,
W.
, 2000, “
Model Updating Using an Incomplete Set of Experimental Modes
,”
J. Sound Vib.
0022-460X,
233
(
4
), pp.
587
600
.
13.
Nalitolela
,
N. G.
,
Penny
,
J. E. T.
, and
Friswell
,
M. I.
, 1992, “
Mass or Stiffness Addition Technique for Structural Parameter Updating
,”
Int. J. Anal. Exp. Modal Anal.
0886-9367,
7
(
3
), pp.
157
168
.
14.
Lew
,
J.-S.
, and
Juang
,
J. N.
, 2002, “
Structural Damage Detection Using Virtual Passive Controllers
,”
J. Guid. Control Dyn.
0731-5090,
25
(
3
), pp.
419
424
.
15.
Cardi
,
A. A.
,
Kosbab
,
B. D.
,
Overly
,
T. G.
,
Schultze
,
J. F.
, and
Bement
,
M. T.
, 2006, “
Damage Assessment Through Control Feedback Expansion of Modal Space
,”
Proc. of 24th International Modal Analysis Conference: A Conference and Exposition on Structural Dynamics
, St. Louis, MO, Society for Experimental Mechanics, Inc., Bethel, CT, paper No. 323.
16.
Jiang
,
L. J.
,
Tang
,
J.
, and
Wang
,
K. W.
, 2006, “
An Enhanced Frequency-Shift Based Damage Identification Method Using Tunable Piezoelectric Transducer Circuitry
,”
Smart Mater. Struct.
0964-1726,
15
(
3
), pp.
799
808
.
17.
Jiang
,
L. J.
,
Tang
,
J.
, and
Wang
,
K. W.
, 2006, “
On the Tuning of Variable Piezoelectric Transducer Circuitry Network for Structural Damage Identification
,” Journal of Sound and Vibration (accepted).
18.
Adams
,
R. D.
,
Cawley
,
P.
,
Pye
,
C. J.
, and
Stone
,
B. J.
, 1978, “
Vibration Technique for Non-Destructively Assessing the Integrity of Structures
,”
J. Mech. Eng. Sci.
0022-2542,
20
(
2
), pp.
93
100
.
19.
Swamidas
,
A. S. J.
, and
Chen
,
Y.
, 1995, “
Monitoring Crack Growth Through Change of Modal Parameters
,”
J. Sound Vib.
0022-460X,
186
(
2
), pp.
325
343
.
20.
Ray
,
L. R.
, and
Tian
,
L.
, 1999, “
Damage Detection in Smart Structures Through Sensitivity Enhancing Feedback Control
,”
J. Sound Vib.
0022-460X,
227
(
5
), pp.
987
1002
.
21.
Ray
,
L. R.
,
Koh
,
B. H.
, and
Tian
,
L.
, 2000, “
Damage Detection and Vibration Control in Smart Plates: Towards Multifunctional Smart Structures
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
11
(
9
), pp.
725
739
.
22.
Koh
,
B. H.
, and
Ray
,
L. R.
, 2004, “
Feedback Controller Design for Sensitivity-Based Damage Localization
,”
J. Sound Vib.
0022-460X,
273
(
1–2
), pp.
317
335
.
23.
Solbeck
,
J. A.
, and
Ray
,
L. R.
, 2006, “
Damage Identification Using Sensitivity-Enhancing Control and Identified Models
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
2
), pp.
210
220
.
24.
Rogers
,
L. C.
, 1970, “
Derivative of Eigenvalues and Eigenvectors
,”
AIAA J.
0001-1452,
8
(
5
), pp.
943
944
.
25.
Plaut
,
R. H.
, and
Huseyin
,
K.
, 1973, “
Derivatives of Eigenvalues and Eigenvectors in Non-Self-Adjoint Systems
,”
AIAA J.
0001-1452,
11
(
2
), pp.
250
251
.
26.
Garg
,
S.
, 1973, “
Derivative of Eigenvalues and Eigenvectors for a General Matrix
,”
AIAA J.
0001-1452,
11
(
8
), pp.
1191
1194
.
27.
Cunningham
,
T. B.
, 1980, “
Eigenspace Selection Procedures for Closed-Loop Response Shaping with Modal Control
,”
Proc. of the IEEE Conference on Decision and Control
,
IEEE
,
New York
, pp.
178
186
.
28.
Shelley
,
F. J.
, and
Clark
,
W. W.
, 2000, “
Active Mode Localization in Distributed Parameter Systems with Consideration of Limited Actuator Placement, Part 1: Theory
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
2
), pp.
160
164
.
29.
Shelley
,
F. J.
, and
Clark
,
W. W.
, 2000, “
Active Mode Localization in Distributed Parameter Systems with Consideration of Limited Actuator Placement, Part 2: Simulations and Experiments
,”
ASME J. Vibr. Acoust.
0739-3717,
122
(
2
), pp.
165
168
.
30.
Tang
,
J.
, and
Wang
,
K. W.
, 2004, “
Vibration Confinement via Optimal Eigenvector Assignment and Piezoelectric Networks
,”
ASME J. Vibr. Acoust.
0739-3717,
126
(
1
), pp.
27
36
.
31.
Wu
,
T. Y.
, and
Wang
,
K. W.
, 2006, “
Periodic Isolator Design Enhancement Via Vibration Confinement Through Eigenvector Assignment and Piezoelectric Circuitry
,”
J. Vib. Control
, 1077-5463 doi: 10.1177/1077546307078756.
32.
Yen
,
J.
,
Liao
,
J. C.
,
Bogju
,
L.
, and
Randolph
,
D.
, 1998, “
A Hybrid Approach to Modeling Metabolic Systems Using a Genetic Algorithm and Simplex Method
,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern.
1083-4419,
28
(
2
), pp.
173
191
.
33.
Huang
,
Y.
,
Chandra
,
A.
,
Jiang
,
Z. Q.
,
Wei
,
X.
, and
Hu
,
K. X.
, 1996, “
Numerical Calculation of Two-Dimensional Effective Moduli for Microcracked Solids
,”
Int. J. Solids Struct.
0020-7683,
33
(
11
), pp.
1575
1586
.
34.
Shen
,
L.
, and
Yi
,
S.
, 2000, “
New Solutions for Effective Elastic Moduli of Microcracked Solids
,”
Int. J. Solids Struct.
0020-7683,
37
(
26
), pp.
3525
3534
.
35.
Kashtalyan
,
M.
, and
Soutis
,
C.
, 2000, “
Effect of Delaminations Induced by Transverse Cracks and Splits on Stiffness Properties of Composite Laminates
,”
Composites, Part A
1359-835X,
31
(
2
), pp.
107
119
.
36.
Zhang
,
J.
, and
Herrmann
,
K. P.
, 1999, “
Stiffness Degradation Induced by Multiplayer Intralaminar Cracking in Composite Laminates
,”
Composites, Part A
1359-835X,
30
(
5
), pp.
683
706
.
You do not currently have access to this content.