Much attention has been recently devoted to the application of homogenization methods for the prediction of the dynamic behavior of periodic domains. One of the most popular techniques employs the Fourier transform in space in conjunction with Taylor series expansions to approximate the behavior of structures in the low frequency/long wavelength regime. The technique is quite effective, but suffers from two major drawbacks. First, the order of the Taylor expansion, and the corresponding frequency range of approximation, is limited by the resulting order of the continuum equations and by the number of boundary conditions, which may be imposed in accordance with the physical constraints on the system. Second, the approximation at low frequencies does not allow capturing bandgap characteristics of the periodic domain. An attempt at overcoming the latter can be made by applying the Fourier series expansion to a macrocell spanning two (or more) irreducible unit cells of the periodic medium. This multicell approach allows the simultaneous approximation of low frequency and high frequency dynamic behavior and provides the capability of analyzing the structural response in the vicinity of the lowest bandgap. The method is illustrated through examples on simple one-dimensional structures to demonstrate its effectiveness and its potentials for application to complex one-dimensional and two-dimensional configurations.

1.
Sigmund
,
O.
, and
Jensen
,
J. S.
, 2003, “
Systematic Design of Phononic Band-Gap Materials and Structures by Topology Optimization
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
361
, pp.
1001
1019
.
2.
Hussein
,
M. I.
,
Hulbert
,
G. M.
, and
Scott
,
R. A.
, 2003, “
Band-Gap Engineering of Elastic Waveguides Using Periodic Materials
,”
Proceedings of the International Mechanical Engineering Congress and Exposition (IMECE)
, Washington, DC, Nov. 16–21.
3.
Langley
,
R. S.
, 1996, “
The Response of Two Dimensional Periodic Structures to Point Harmonic Forcing
,”
J. Sound Vib.
0022-460X,
197
, pp.
447
469
.
4.
Mead
,
D. J.
, and
Parthan
,
S.
, 1979, “
Free Wave Propagation in Two-Dimensional Periodic Plates
,”
J. Sound Vib.
0022-460X,
64
(
3
), pp.
325
348
.
5.
Martinsson
,
P. G.
, and
Movchan
,
A. B.
, 2003, “
Vibrations of Lattice Structures and Phononic Bandgaps
,”
Q. J. Mech. Appl. Math.
0033-5614,
56
, pp.
45
64
.
6.
Ruzzene
,
M.
,
Scarpa
,
F.
, and
Soranna
,
F.
, 2003, “
Wave Beaming Effects in Bi-Dimensional Cellular Structures
,”
Smart Mater. Struct.
0964-1726,
12
, pp.
363
372
.
7.
Jeong
,
S. M.
, and
Ruzzene
,
M.
, 2003, “
Wave Propagation in Periodic Cylindrical Grids
,”
Shock Vib.
1070-9622,
11
(
3
), pp.
311
331
.
8.
Park
,
H. S.
, and
Liu
,
W. K.
, 2004, “
An Introduction and Tutorial on Multiple-Scale Analysis in Solids
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
(
17–20
), pp.
1733
1772
.
9.
Liu
,
W. K.
,
Hao
,
S.
,
Belytschko
,
T.
,
Li
,
S.
, and
Chang
,
C. T.
, 2000, “
Multi-Scale Methods
,”
Int. J. Numer. Methods Eng.
0029-5981,
47
(
7
), pp.
1343
1361
.
10.
Fish
,
J.
, and
Chen
,
W.
, 2004, “
Discrete-to-Continuum Bridging Based on Multigrid Principles
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
1693
1711
.
11.
Fish
,
J.
, and
Chen
,
W.
, 2001, “
Higher-Order Homogenization of Initial/Boundary-Value Problem
,”
J. Eng. Mech.
0733-9399,
127
, pp.
1223
1230
.
12.
Fish
,
J.
, and
Nagai
,
G.
, 2002, “
Nonlocal Dispersive Model for Wave Propagation in Heterogeneous Media. Part 1: One-Dimensional Case
,”
Int. J. Numer. Methods Eng.
0029-5981,
54
, pp.
331
346
.
13.
Fish
,
J.
,
Chen
,
W.
, and
Nagai
,
G.
, 2002, “
Nonlocal Dispersive Model for Wave Propagation in Heterogeneous Media. Part 2: Multi-Dimensional Case
,”
Int. J. Numer. Methods Eng.
0029-5981,
54
, pp.
347
363
.
14.
McDevitt
,
T. W.
,
Hulbert
,
G. M.
, and
Kikuchi
,
N.
, 2001, “
An Assumed Strain Method for the Dispersive Global-Local Modeling of Periodic Structures
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
190
, pp.
6425
6440
.
15.
McDevitt
,
T. W.
,
Hulbert
,
G. M.
, and
Kikuchi
,
N.
, 1999, “
Plane Harmonic Wave Propagation in Three-Dimensional Composite Media
,”
Finite Elem. Anal. Design
0168-874X,
33
, pp.
263
282
.
16.
Hussein
,
M. I.
, and
Hulbert
,
G.
, 2006, “
Mode-Enriched Dispersion Models of Periodic Materials Within a Multiscale Mixed Finite Element Framework
,”
Finite Elem. Anal. Design
0168-874X,
42
(
7
), pp.
602
612
.
17.
Maewal
,
A.
, 1986, “
Construction of Models of Dispersive Elastodynamic Behavior of Periodic Composites: A Computational Approach
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
57
, pp.
191
205
.
18.
Andrianov
,
I. V.
,
Awrejcewicz
,
J.
, and
Diskovsky
,
A. A.
, 2006, “
Homogenization of Quasi Periodic Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
128
, pp.
532
534
.
19.
Martinsson
,
P. G.
, 2002, “
Fast Multiscale Methods for Lattice Equations
,” Ph.D. thesis, University of Texas at Austin, Austin, TX.
20.
Martinsson
,
P. G.
, and
Babuska
,
I.
, 2002, “
Mechanics of Materials With Periodic Truss or Frame Micro-Structures I: Korn’s Inequality
,”
Proc. R. Soc. London, Ser. A
0950-1207,
458
(
2027
), pp.
2609
2622
.
21.
Gonella
,
S.
, and
Ruzzene
,
M.
, 2008, “
Homogenization of Vibrating Periodic Lattice Structures
,”
Appl. Math. Model.
0307-904X,
32
(
4
), pp.
459
482
.
22.
Dmitriev
,
S. V.
,
Vasiliev
,
A. A.
,
Yoshikawa
,
N.
,
Shigenari
,
T.
, and
Ishibashi
,
Y.
, 2005, “
Multi-Field Continuum Approximation for Discrete Medium With Microscopic Rotations
,”
Phys. Status Solidi B
0370-1972,
242
(
3
), pp.
528
537
.
23.
Vasiliev
,
A. A.
, and
Miroshnichenko
,
A. E.
, 2005, “
Multi-Field Continuum Theory for Medium With Microscopic Rotations
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
6245
6260
.
24.
Brown
,
G. P.
, and
Byrne
,
K. P.
, 2005, “
Determining the Response of Infinite, One-Dimensional, Non-Uniform Periodic Structures by Substructuring Using Waveshapes Coordinates
,”
J. Sound Vib.
0022-460X,
287
, pp.
505
523
.
You do not currently have access to this content.