In this paper, we present a nonlinear electromagnetic energy harvesting device that has a broadly resonant response. The nonlinearity is generated by a particular arrangement of magnets in conjunction with an iron-cored stator. We show the resonant response of the system to both pure-tone excitation and narrow-band random excitation. In addition to the primary resonance, the superharmonic resonances of the harvester are also investigated and we show that the corresponding mechanical upconversion of the excitation frequency may be useful for energy harvesting. The harvester is modeled using a Duffing-type equation and the results are compared with the experimental data.

1.
Williams
,
C.
, and
Yates
,
R.
, 1996, “
Analysis of a Micro-Electric Generator for Microsystems
,”
Sens. Actuators A
0924-4247,
52
(
1–3
), pp.
8
11
.
2.
Williams
,
M.
, and
Blakeborough
,
A.
, 2001, “
Laboratory Testing of Structures Under Dynamic Loads: An Introductory Review
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
359
(
1786
), pp.
1651
1669
.
3.
Baker
,
J.
,
Roundy
,
S.
, and
Wright
,
P.
, 2005, “
Alternative Geometries for Increasing Power Density in Vibration Energy Scavenging for Wireless Sensor Networks
,”
Proceedings of the Third International Energy Conversion Engineering Conference, San Francisco
, CA.
4.
Renno
,
J.
,
Daqaq
,
M.
, and
Inman
,
D.
, 2009, “
On the Optimal Energy Harvesting From a Vibration Source
,”
J. Sound Vib.
0022-460X,
320
, pp.
386
405
.
5.
Stephen
,
N.
, 2006, “
On Energy Harvesting From Ambient Vibration
,”
J. Sound Vib.
0022-460X,
293
(
1–2
), pp.
409
425
.
6.
Burrow
,
S.
, and
Clare
,
L.
, 2007, “
A Resonant Generator With Non-Linear Compliance for Energy Harvesting in High Vibrational Environments
,”
Proceedings of the Electric Machines & Drives Conference, IEMDC ’07
, Antalya, Turkey, Vol.
1
, pp.
715
720
.
7.
Burrow
,
S.
,
Clare
,
L.
,
Carrella
,
A.
, and
Barton
,
D.
, 2008, “
Vibration Energy Harvesters With Non-Linear Compliance
,”
Proceedings of the SPIE Smart Structures/NDE Conference
, San Diego, CA, p.
692807
.
8.
Challa
,
V.
,
Prasad
,
M.
,
Shi
,
Y.
, and
Fisher
,
F.
, 2008, “
A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
0964-1726,
17
(
1
), p.
015035
.
9.
Morris
,
D.
,
Youngsman
,
J.
,
Anderson
,
M.
, and
Bahr
,
D.
, 2008, “
A Resonant Frequency Tunable, Extensional Mode Piezoelectric Vibration Harvesting Mechanism
,”
Smart Mater. Struct.
0964-1726,
17
(
6
), p.
065021
.
10.
Mann
,
B.
, and
Sims
,
N.
, 2009, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
0022-460X,
319
(
1–2
), pp.
515
530
.
11.
Triplett
,
A.
, and
Quinn
,
D.
, 2009, “
The Effect of Nonlinear Piezoelectric Coupling on Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
20
, pp.
1959
1967
.
12.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
, 2009, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
0031-9007,
102
(
8
), p.
080601
.
13.
Gammaitoni
,
L.
,
Neri
,
I.
, and
Vocca
,
H.
, 2009, “
Nonlinear Oscillators for Vibration Energy Harvesting
,”
Appl. Phys. Lett.
0003-6951,
94
(
16
), p.
164102
.
14.
Guyomar
,
D.
,
Badel
,
A.
,
Lefeuvre
,
E.
, and
Richard
,
C.
, 2005, “
Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
0885-3010,
52
(
4
), pp.
584
595
.
15.
Carrella
,
A.
,
Brennan
,
M.
, and
Waters
,
T.
, 2007, “
Static Analysis of a Passive Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
J. Sound Vib.
0022-460X,
301
(
3–5
), pp.
678
689
.
16.
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
, 2005, “
Experimental Study of Non-Linear Energy Pumping Occurring at a Single Fast Frequency
,”
Int. J. Non-linear Mech.
,
40
(
6
), pp.
891
899
.
17.
Vakakis
,
A. F.
, and
Gendelman
,
O.
, 2001, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture
,”
ASME J. Appl. Mech.
0021-8936,
68
(
1
), pp.
42
48
.
18.
Ibrahim
,
R.
, 2008, “
Recent Advances in Nonlinear Passive Vibration Isolators
,”
J. Sound Vib.
0022-460X,
314
(
3–5
), pp.
371
452
.
19.
Quinn
,
D.
,
Vakakis
,
A.
, and
Bergman
,
L.
, 2007, “
Vibration-Based Energy Harvesting With Essential Nonlinearities
,” ASME Paper No. DETC2007-35457.
20.
Inman
,
D.
, 2007,
Engineering Vibration
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
21.
Jordan
,
D.
, and
Smith
,
P.
, 1999,
Nonlinear Ordinary Differential Equations
,
Oxford University Press
,
New York
.
22.
Nayfeh
,
A.
, and
Mook
,
D.
, 1995,
Nonlinear Oscillations
,
Wiley
,
New York
.
23.
Rajan
,
S.
, and
Davies
,
H.
, 1988, “
Multiple Time Scaling of the Response of a Duffing Oscillator to Narrow-Band Random Excitation
,”
J. Sound Vib.
0022-460X,
123
(
3
), pp.
497
506
.
24.
Kerschen
,
G.
,
Worden
,
K.
,
Vakakis
,
A.
, and
Golinval
,
J. -C.
, 2006, “
Past, Present and Future of Nonlinear System Identification in Structural Dynamics
,”
Mech. Syst. Signal Process.
0888-3270,
20
(
3
), pp.
505
592
.
25.
Doedel
,
E.
,
Champneys
,
A.
,
Fairgrieve
,
T.
,
Kuznetsov
,
Y.
,
Sandstede
,
B.
, and
Wang
,
X.
, 1998, AUTO-97: Continuation and Bifurcation Software for Ordinary Differential Equations.
26.
Davies
,
H.
, and
Rajan
,
S.
, 1988, “
Random Superharmonic and Subharmonic Response: Multiple Time Scaling of a Duffing Oscillator
,”
J. Sound Vib.
0022-460X,
126
(
2
), pp.
195
208
.
You do not currently have access to this content.