This paper studies the piezoelectric damping of resistively shunted beams induced by the conversion of the vibration energy into electrical energy that is dissipated in the resistor through Joule heating. Significant contributions have been made in the modeling and development of the resistive shunt damping technique; however, many approaches involve complex models that require the use of numerical methods to determine system parameters and predict damping. This paper develops a closed-form solution for the optimal parameter of a resistive shunt damping system. The model is validated through experimental testing and provides a simple yet accurate method to predict the induced damping in a smart structure.

1.
Jones
,
D. I. G.
, 2001,
Handbook of Viscoelastic Vibration Damping
,
Wiley
,
New York
.
2.
Lesieutre
,
G. A.
, 1998, “
Vibration Damping and Control Using Shunted Piezoelectric Materials
,”
Shock Vib. Dig.
0583-1024,
30
, pp.
187
195
.
3.
Hagood
,
N. W.
, and
von Flotow
,
A.
, 1991, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
0022-460X,
146
, pp.
243
268
.
4.
Wu
,
S.
, 1996, “
Piezoelectric Shunts With a Parallel R-L Circuit for Structural Damping and Vibration Control
,”
Proceedings of the SPIE-Smart Structures and Materials Conference: Passive Damping and Isolation
, San Diego, CA, pp.
256
269
.
5.
Park
,
C. H.
, and
Inman
,
D. J.
, 1999, “
A Uniform Model for Series R-L and Parallel R-L Shunt Circuits and Power Consumption
,”
Proceedings of the SPIE-Smart Structures and Integrated Systems Conference
, Newport Beach, CA, pp.
797
804
.
6.
Caruso
,
G.
, 2001, “
A Critical Analysis of Electric Shunt Circuits Employed in Piezoelectric Passive Vibration Damping
,”
Smart Mater. Struct.
0964-1726,
10
, pp.
1059
1068
.
7.
Park
,
C. H.
, and
Inman
,
D. J.
, 2003, “
Enhanced Piezoelectric Shunt Design
,”
Shock Vib.
1070-9622,
10
, pp.
127
133
.
8.
Park
,
C. H.
, 2003, “
Dynamics Modeling of Beams With Shunted Piezoelectric Elements
,”
J. Sound Vib.
0022-460X,
268
, pp.
115
129
.
9.
Leo
,
D. J.
, 2007,
Engineering Analysis of Smart Material Systems
,
Wiley
,
New York
.
10.
Hagood
,
N. W.
,
Chung
,
W. H.
, and
von Flotow
,
A.
, 1990, “
Modeling of Piezoelectric Actuator Dynamics for Active Structural Control
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
1
, pp.
327
354
.
11.
Hollkamp
,
J. J.
, and
Gordon
,
R. W.
, 1996, “
An Experimental Comparison of Piezoelectric and Constrained Layer Damping
,”
Smart Mater. Struct.
0964-1726,
5
, pp.
715
722
.
12.
Davis
,
C. L.
, and
Lesieutre
,
G. A.
, 1995, “
A Modal Strain Energy Approach to the Prediction of Resistively Shunted Piezoceramic Damping
,”
J. Sound Vib.
0022-460X,
184
, pp.
129
139
.
13.
Fein
,
O. M.
, and
Gaul
,
L.
, 2004, “
On the Application of Shunted Piezoelectric Material to Enhance Structural Damping of a Plate
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
15
, pp.
737
743
.
14.
Law
,
H. H.
,
Rossiter
,
P. L.
,
Simon
,
G. P.
, and
Koss
,
L. L.
, 1996, “
Characterization of Mechanical Vibration Damping by Piezoelectric Materials
,”
J. Sound Vib.
0022-460X,
197
, pp.
489
513
.
15.
Liao
,
Y.
, and
Sodano
,
H. A.
, 2008, “
Structural Effects and Energy Conversion Efficiency of Power Harvesting
,”
J. Intell. Mater. Syst. Struct.
1045-389X,
20
, pp.
505
514
.
16.
Sodano
,
H. A.
,
Park
,
G.
, and
Inman
,
D. J.
, 2004, “
Estimation of Electric Charge Output for Piezoelectric Energy Harvesting
,”
Strain
0039-2103,
40
, pp.
49
58
.
17.
Liao
,
Y.
, and
Sodano
,
H. A.
, 2008, “
Model of a Single Mode Energy Harvester and Properties for Optimal Power Generation
,”
Smart Mater. Struct.
0964-1726,
17
, p.
065026
.
You do not currently have access to this content.