The dynamic behavior of a rectangular thin plate under parametric and external excitations is investigated. The motion of the thin plate is modeled by coupled second-order nonlinear ordinary differential equations. Their approximate solutions are sought by applying the method of multiple scales. A reduced system of four first-order ordinary differential equations is determined to describe the time variation of the amplitudes and phases of the vibration in the horizontal and vertical directions. The steady-state response and the stability of the solutions for various parameters are studied numerically, using the frequency-response function and the phase-plane methods. It is also shown that the system parameters have different effects on the nonlinear response of the thin plate. Moreover, the chaotic motion of the thin plate is found by numerical simulation.

1.
Holmes
,
P. J.
, 1977, “
Bifurcation to Divergence and Flutter in Flow-Induced Oscillations: A Finite-Dimensional Analysis
,”
J. Sound Vib.
0022-460X,
53
(
4
), pp.
471
503
.
2.
Holmes
,
P. J.
, and
Marsden
,
J. E.
, 1978, “
Bifurcation to Divergence and Flutter in Flow-Induced Oscillations: An Infinite-Dimensional Analysis
,”
Automatica
0005-1098,
14
(
4
), pp.
367
384
.
3.
Holmes
,
P. J.
, 1978, “
Centre Manifolds, Normal Forms and Bifurcations of Vector Fields With Application to Coupling Between Periodic and Steady Motions
,”
Physica D
0167-2789,
2
(
2
), pp.
449
481
.
4.
Wu
,
Y. J.
, and
Zhu
,
W. Q.
, 2008, “
Stochastic Averaging of Strongly Nonlinear Oscillators Under Combined Harmonic and Wide-Band Noise Excitations
,”
ASME J. Vibr. Acoust.
0739-3717,
130
, p.
051004
.
5.
Gibbs
,
B. M.
, and
Shen
,
Y.
, 1990, “
Bending Vibrations of a Plate Combination Subject to Point Excitation
,”
ASME J. Vibr. Acoust.
0739-3717,
112
(
3
), pp.
346
349
.
6.
Dimiriadis
,
E. K.
,
Fullere
,
C. R.
, and
Rogers
,
C. A.
, 1991, “
Piezoelectric Actuators for Distributed Vibration Excitation of Thin Plates
,”
ASME J. Vibr. Acoust.
0739-3717,
113
(
1
), pp.
100
107
.
7.
Hadian
,
J.
, and
Nayfeh
,
A. H.
, 1990, “
Modal Interaction in Circular Plates
,”
J. Sound Vib.
0022-460X,
142
(
2
), pp.
279
292
.
8.
Chiang
,
C. K.
,
Mei
,
C.
, and
Gray
,
C. E.
, Jr.
, 1991, “
Finite Element Large-Amplitude Free and Forced Vibrations of Rectangular Thin Composite Plates
,”
ASME J. Vibr. Acoust.
0739-3717,
113
(
3
), pp.
309
315
.
9.
Feng
,
Z. C.
, and
Sethna
,
P. R.
, 1993, “
Global Bifurcations in the Motion of Parametrically Excited Thin Plates
,”
Nonlinear Dyn.
0924-090X,
4
(
4
), pp.
389
408
.
10.
Chang
,
S. I.
,
Baja
,
A. K.
, and
Krousgrill
,
C. M.
, 1993, “
Non-Linear Vibrations and Chaos in Harmonically Excited Rectangular Plates With One-to-One Internal Resonance
,”
Nonlinear Dyn.
0924-090X,
4
(
5
), pp.
433
460
.
11.
Young
,
T. H.
, and
Liou
,
G. T.
, 1992, “
Coriolis Effect on the Vibration of a Cantilever Plate With Time-Varying Rotating Speed
,”
ASME J. Vibr. Acoust.
0739-3717,
114
(
2
), pp.
232
241
.
12.
Ostiguy
,
G. L.
,
Samson
,
L. P.
, and
Nguyen
,
H.
, 1993, “
On the Occurrence of Simultaneous Resonances in Parametrically-Excited Rectangular Plates
,”
ASME J. Vibr. Acoust.
0739-3717,
115
(
3
), pp.
344
352
.
13.
Abe
,
A.
,
Kobayashi
,
Y.
, and
Yamada
,
G.
, 1998, “
Two-Mode Response of Simply Supported, Rectangular Laminated Plates
,”
Int. J. Non-Linear Mech.
0020-7462,
34
(
4
), pp.
675
690
.
14.
Lai
,
S. K.
,
Lim
,
C. W.
, and
Xiang
,
Y.
, and
Zhang
,
W.
, 2009, “
On Asymptotic Analysis for Large Amplitude Nonlinear Free Vibration of Simply Supported Laminated Plates
,”
ASME J. Vibr. Acoust.
0739-3717,
131
, p.
051010
.
15.
Shiau
,
L. -C.
, and
Wu
,
T. -Y.
, 1997, “
Free Vibration of Buckled Laminated Plates by Finite Element Method
,”
ASME J. Vibr. Acoust.
0739-3717,
119
(
4
), pp.
635
640
.
16.
Zhang
,
W.
, 2001, “
Global and Chaotic Dynamics for a Parametrically Excited Thin Plate
,”
J. Sound Vib.
0022-460X,
239
(
5
), pp.
1013
1036
.
17.
Zhang
,
W.
, and
Liu
,
Z.
, 2001, “
Global Dynamics of a Parametrically and Externally Excited Thin Plate
,”
Nonlinear Dyn.
0924-090X,
24
(
3
), pp.
245
268
.
18.
Chen
,
D. -Y.
, and
Ren
,
B. -S.
, 2002, “
Finite Element Analysis of the Lateral Vibration of Thin Annular and Circular Plates With Variable Thickness
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
2
), pp.
302
309
.
19.
Sasajima
,
M.
,
Kakudate
,
T.
, and
Narita
,
Y.
, 1998, “
Vibration Behavior and Simplified Design of Thick Rectangular Plates With Variable Thickness
,”
ASME J. Vibr. Acoust.
0739-3717,
120
(
3
), pp.
747
752
.
20.
Kim
,
C. H.
,
Lee
,
C. -W.
, and
Perkins
,
N. C.
, 2005, “
Nonlinear Vibration of Sheet Metal Plates Under Interacting Parametric and External Excitation During Manufacturing
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
1
), pp.
36
43
.
21.
Roy
,
A.
, and
Chatterjee
,
A.
, 2009, “
Vibrations of a Beam in Variable Contact With a Flat Surface
,”
ASME J. Vibr. Acoust.
0739-3717,
131
, p.
041010
.
22.
Shiau
,
L. -C.
, and
Kuo
,
S. -Y.
, 2006, “
Free Vibration of Thermally Buckled Composite Sandwich Plates
,”
ASME J. Vibr. Acoust.
0739-3717,
128
(
1
), pp.
1
7
.
23.
Philen
,
M. K.
, and
Wang
,
K. W.
, 2005, “
Active Stiffeners for Vibration Control of a Circular Plate Structure: Analytical and Experimental Investigations
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
5
), pp.
441
450
.
24.
Chai
,
C. Y.
, 1980,
Non-Linear Analysis of Plate
,
McGraw-Hill
,
New York
.
25.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley-Interscience
,
New York
.
You do not currently have access to this content.