An investigation of noncontact manipulation techniques based on acoustic levitation was undertaken in air. The standing wave acoustic levitation (SWAL) was observed when standing waves trap small objects at pressure nodes. In this paper, two ultrasonic bolt-clamped Langevin type transducers (BLTs) generating traveling waves by modulating parameters of the two traveling waves were used to manipulate a trapped object. Frequency, amplitude, and phase modulations of the two actuators were exploited. From simulation and experiments, the phase modulation was prominent among other methods due to its long range and smooth operation. It is also found that angles between two actuators affect the trajectory of the trapped object during the parameter modulations. Sinusoidal and elliptic paths of the object were observed experimentally through a combination of parameters at certain tilt angles.

References

1.
Weber
,
J.
,
Hampton
,
D. S.
,
Merkley
,
D. R.
,
Rey
,
C. A.
,
Zatarski
,
M. M.
, and
Nordine
,
P. C.
,
1994
, “
Aero-Acoustic Levitation: A Method for Containerless Liquid-Phase Processing at High Temperatures
,”
Rev. Sci. Instrum.
,
65
(
2
), pp.
456
465
.10.1063/1.1145157
2.
Shi
,
J.
,
Ahmed
,
D.
,
Mao
,
X.
,
Lin
,
S. C. S.
,
Lawit
,
A.
, and
Huang
,
T. J.
,
2009
, “
Acoustic Tweezers: Patterning Cells and Microparticles Using Standing Surface Acoustic Waves (SSAW)
,”
Lab Chip
,
9
(
20
), pp.
2890
2895
.10.1039/b910595f
3.
Hawkes
,
J. J.
,
Cefai
,
J. J.
,
Barrow
,
D. A.
,
Coakley
,
W. T.
, and
Briarty
,
L. G.
,
1998
, “
Ultrasonic Manipulation of Particles in Microgravity
,”
J. Phys. D: Appl. Phys.
,
31
, pp.
1673
1680
.10.1088/0022-3727/31/14/010
4.
Rayleigh
,
J. W. S.
,
1937
,
The Theory of Sound
,
Macmillan
,
London
, Chap. 12.
5.
King
,
L. V.
,
1934
, “
On the Acoustic Radiation Pressure on Spheres
,”
Proc. R. Soc. London, Ser. A
,
147
(
861
), pp.
212
240
.10.1098/rspa.1934.0215
6.
Yosioka
,
K.
, and
Kawasima
,
Y.
,
1955
, “
Acoustic Radiation Pressure on a Compressible Sphere
,”
Acustica
,
5
(
3
), pp.
167
173
.
7.
Gor'kov
,
L. P.
,
1962
, “
On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid
,”
Sov. Phys. Dokl.
,
6
, pp.
773
775
.
8.
Nyborg
,
W. L.
,
1967
, “
Radiation Pressure on a Small Rigid Sphere
,”
J. Acoust. Soc. Am.
,
42
, pp.
947
952
.10.1121/1.1910702
9.
Wang
,
T. G.
, and
Lee
,
C. P.
,
1998
, “
Radiation Pressure and Acoustic Levitation
,”
Nonlinear Acoustics
,
M. F. Hamilton
and
D. T.
Blackstock
, eds.,
Academic Press
,
New York
, pp.
189
194
.
10.
Whitworth
,
G.
, and
Coakley
,
W.
,
1992
, “
Particle Column Formation in a Stationary Ultrasonic Field
,”
J. Acoust. Soc. Am.
,
91
, pp.
79
85
.10.1121/1.402622
11.
Whitworth
,
G.
,
Grundy
,
M.
, and
Coakley
,
W.
,
1991
, “
Transport and Harvesting of Suspended Particles Using Modulated Ultrasound
,”
Ultrasonics
,
29
(
6
), pp.
439
444
.10.1016/0041-624X(91)90073-H
12.
Woodside
,
S. M.
,
Bowen
,
B. D.
, and
Piret
,
J. M.
,
1997
, “
Measurement of Ultrasonic Forces for Particle–Liquid Separations
,”
AIChE J.
,
43
(
7
), pp.
1727
1736
.10.1002/aic.690430710
13.
Tuziuti
,
T.
,
Kozuka
,
T.
, and
Mitome
,
H.
,
1999
, “
Measurement of Distribution of Acoustic Radiation Force Perpendicular to Sound Beam Axis
,”
Jpn. J. Appl. Phys.
,
38
, pp.
3297
3301
.10.1143/JJAP.38.3297
14.
Spengler
,
J.
,
Coakley
,
W.
, and
Christensen
,
K.
,
2003
, “
Microstreaming Effects on Particle Concentration in an Ultrasonic Standing Wave
,”
AIChE J.
,
49
(
11
), pp.
2773
2782
.10.1002/aic.690491110
15.
Kuznetsova
,
L. A.
, and
Coakley
,
W. T.
,
2004
, “
Microparticle Concentration in Short Path Length Ultrasonic Resonators: Roles of Radiation Pressure and Acoustic Streaming
,”
J. Acoust. Soc. Am.
,
116
(
4
), pp.
1956
1966
.10.1121/1.1785831
16.
Perales
,
F.
, and
Gonzalez
, I
.
,
2005
, “
On the Forces Acting in Micromanipulation of Particles at Low Frequencies
,”
Proceedings of the IEEE International Ultrasonics Symposium
, Rotterdam, The Netherlands, September 18–21, Vol. 4, pp.
2108
2111
.10.1109/ULTSYM.2005.1603297
17.
Matsui
,
T.
,
Ohdaira
,
E.
,
Masuzawa
,
N.
, and
Ide
,
M.
,
1995
, “
Translation of an Object Using Phase-Controlled Sound Sources in Acoustic Levitation
,”
Jpn. J. Appl. Phys.
,
34
(
5B
), pp.
2771
2773
.10.1143/JJAP.34.2771
18.
Kozuka
,
T.
,
Yasui
,
K.
,
Tuziuti
,
T.
,
Towata
,
A.
, and
Iida
,
Y.
,
2007
, “
Noncontact Acoustic Manipulation in Air
,”
Jpn. J. Appl. Phys.
,
46
(
7B
), pp.
4948
4950
.10.1143/JJAP.46.4948
19.
Kozuka
,
T.
,
Tuziuti
,
T.
,
Mitome
,
H.
, and
Fukuda
,
T.
,
2000
, “
Micromanipulation Using a Focused Ultrasonic Standing Wave Field
,”
Electron. Commun. Jpn.
,
83
(
1
), pp.
53
60
.10.1002/(SICI)1520-6440(200001)83:1<53::AID-ECJC7>3.0.CO;2-A
20.
Kozuka
,
T.
,
Tuziuti
,
T.
,
Mitome
,
H.
, and
Fukuda
,
T.
,
1998
, “
Control of a Standing Wave Field Using a Line-Focused Transducer for Two-Dimensional Manipulation of Particles
,”
Jpn. J. Appl. Phys.
,
37
(
5B
), pp.
2974
2978
.10.1143/JJAP.37.2974
21.
Saito
,
M.
,
Kitamura
,
N.
, and
Terauchi
,
M.
,
2002
, “
Ultrasonic Manipulation of Locomotive Microorganisms and Evaluation of their Activity
,”
Jpn. J. Appl. Phys.
,
92
, pp.
7581
7587
.10.1063/1.1522813
22.
Kozuka
,
T.
,
Tuziuti
,
T.
, and
Mitome
,
H.
,
1998
, “
Two-Dimensional Acoustic Micromanipulation Using Three Ultrasonic Transducers
,” Proceedings of the IEEE International Symposium on Micromechatronics and Human Science (
MHS'98
), Nagoya, Japan, November 25–28, pp.
201
204
.10.1109/MHS.1998.745782
23.
Loh
,
B. G.
, and
Ro
,
P. I.
,
2000
, “
An Object Transport System Using Flexural Ultrasonic Progressive Waves Generated by Two-Mode Excitation
,”
IEEE Trans. Ultrason. Ultrasonics, Ferroelectr. Freq. Control
,
47
(
4
), pp.
994
999
.10.1109/58.852083
24.
Kinsler
,
L. E.
,
Frey
,
A. R.
,
Coppens
,
A. B.
, and
Sanders
,
J. Y.
,
2000
,
Fundamentals of Acoustics
,
Wiley
,
New York
, Chap. 7.
You do not currently have access to this content.