A general wave approach for the vibration analysis of curved beam structures is presented. The analysis is based on wave propagation, transmission, and reflection, including the effects of both propagating and decaying near-field wave components. A matrix formulation is used that offers a systematic and concise method for tackling free and forced vibrations of complex curved beam structures. To illustrate the effectiveness of the approach, several numerical examples are presented. The predictions made using the wave approach are shown to be in excellent agreement with a conventional finite element analysis, with the advantage of reduced computational costs and good conditioning number of the characteristic equation. The developed wave approach is applied to investigate the free vibration, vibration transmission, and power flow of built-up structures consisting of curved beams, straight beams, and masses, with the aim for designing vibration isolation structure with high attenuation ability. Wave reflection and transmission in the infinite curved beam structure, as well as vibration and energy transmission in coupled finite curved beam structure are investigated. Numerical results show that wave mode conversion takes place for the reflected and transmitted wave propagating through a curved beam, and the power flow in the coupled curved beam structure shows energy attenuation and conversion by curved beam and the discontinuities. The investigation will shed some light on the designing of curved beam structures.

References

1.
Chidamparam
,
P.
, and
Leissa
,
A.
,
1993
, “
Vibrations of Planar Curved Beams, Rings, and Arches
,”
Appl. Mech. Rev.
,
46
(
9
), pp.
467
483
.10.1115/1.3120374
2.
Kawakami
,
M.
,
Sakiyama
,
T.
,
Matsuda
,
H.
, and
Morita
,
C.
,
1995
, “
In-Plane and Out-of-Plane Free Vibrations of Curved Beams With Variable Sections
,”
J. Sound Vib.
,
187
(
3
), pp.
381
401
.10.1006/jsvi.1995.0531
3.
Chidamparam
,
P.
, and
Leissa
,
A.
,
1995
, “
Influence of Centerline Extensibility on the In-Plane Free Vibrations of Loaded Circular Arches
,”
J. Sound Vib.
,
183
(
5
), pp.
779
795
.10.1006/jsvi.1995.0286
4.
Oh
,
S. J.
,
Lee
,
B. K.
, and
Lee
, I
. W.
,
1999
, “
Natural Frequencies of Non-Circular Arches With Rotatory Inertia and Shear Deformation
,”
J. Sound Vib.
,
219
(
1
), pp.
23
33
.10.1006/jsvi.1998.1822
5.
Tüfek
, I
. E.
, and
Arpaci
,
A.
,
1998
, “
Exact Solution of In-Plane Vibrations of Circular Arches With Account Taken of Axial Extension, Transverse Shear and Rotatory Inertia Effects
,”
J. Sound Vib.
,
209
(
5
), pp.
845
856
.10.1006/jsvi.1997.1290
6.
Huang
,
C.
,
Tseng
,
Y.
,
Chang
,
S.
, and
Hung
,
C.
,
2000
, “
Out-of-Plane Dynamic Analysis of Beams With Arbitrarily Varying Curvature and Cross-Section by Dynamic Stiffness Matrix Method
,”
Int. J. Solids. Struct.
,
37
(
3
), pp.
495
513
.10.1016/S0020-7683(99)00017-7
7.
Kim
,
M.
,
Kim
,
N.
, and
Min
,
B.
,
2002
, “
Analytical and Numerical Study on Spatial Free Vibration of Non-Symmetric Thin-Walled Curved Beams
,”
J. Sound Vib.
,
258
(
4
), pp.
595
618
.10.1006/jsvi.2002.5090
8.
Lee
,
S. K.
,
Mace
,
B. R.
, and
Brennan
,
M. J.
,
2007
, “
Wave Propagation, Reflection and Transmission in Curved Beams
,”
J. Sound Vib.
,
306
(
3–5
), pp.
636
656
.10.1016/j.jsv.2007.06.001
9.
Mace
,
B.
,
1984
, “
Wave Reflection and Transmission in Beams
,”
J. Sound Vib.
,
97
(
2
), pp.
237
246
.10.1016/0022-460X(84)90320-1
10.
Mace
,
B.
,
Jones
,
R. W.
, and
Harland
,
N.
,
2001
, “
Wave Transmission Through Structural Inserts
,”
J. Acoust. Soc. Am.
,
109
(
4
), pp.
1417
1421
.10.1121/1.1352081
11.
Tan
,
C.
, and
Kang
,
B.
,
1998
, “
Wave Reflection and Transmission in an Axially Strained, Rotating Timoshenko Shaft
,”
J. Sound Vib.
,
213
(
3
), pp.
483
510
.10.1006/jsvi.1998.1517
12.
Mei
,
C.
, and
Mace
,
B.
,
2005
, “
Wave Reflection and Transmission in Timoshenko Beams and Wave Analysis of Timoshenko Beam Structures
,”
ASME J. Vib. Acoust.
,
127
(
4
), pp.
382
394
.10.1115/1.1924647
13.
Mei
,
C.
,
2008
, “
Wave Analysis of In-Plane Vibrations of H- and T-Shaped Planar Frame Structures
,”
ASME J. Vib. Acoust.
,
130
(
6
), p.
061004
.10.1115/1.2980373
14.
Mei
,
C.
,
2010
, “
In-Plane Vibrations of Classical Planar Frame Structures—An Exact Wave-Based Analytical Solution
,”
J. Vib. Control
,
16
(
9
), pp.
1265
1285
.10.1177/1077546309339422
15.
Mei
,
C.
,
2012
, “
Free Vibration Analysis of Classical Single-Story Multi-Bay Planar Frames
,”
J. Vib. Control
(to be published).10.1177/1077546312455081
16.
Mei
,
C.
,
2011
, “
Wave Control of Vibrations in Multi-Story Planar Frame Structures Based on Classical Vibration Theories
,”
J. Sound Vib.
,
330
, pp.
5530
5544
.10.1016/j.jsv.2011.06.022
17.
Lee
,
S. K.
,
2006
, “
Wave Reflection, Transmission and Propagation in Structural Waveguides
,” Ph.D. thesis, University of Southampton, Southampton, UK.
18.
Lee
,
S.
,
Mace
,
B.
, and
Brennan
,
M.
,
2007
, “
Wave Propagation, Reflection and Transmission in Non-Uniform One-Dimensional Waveguides
,”
J. Sound Vib.
,
304
(
1–2
), pp.
31
49
.10.1016/j.jsv.2007.01.039
19.
Walsh
,
S.
, and
White
,
R.
,
2000
, “
Vibrational Power Transmission in Curved Beams
,”
J. Sound Vib.
,
233
(
3
), pp.
455
488
.10.1006/jsvi.1999.2834
20.
Walsh
,
S.
, and
White
,
R.
,
2001
, “
Measurement of Vibrational Power Transmission in Curved Beams
,”
J. Sound Vib.
,
241
(
2
), pp.
157
183
.10.1006/jsvi.2000.3293
21.
Jeong
,
C.
, and
Ih
,
J.
,
2009
, “
Effects of Nearfield Waves and Phase Information on the Vibration Analysis of Curved Beams
,”
J. Mech. Sci. Technol.
,
23
(
8
), pp.
2193
2205
.10.1007/s12206-009-0515-0
22.
Bot
,
A. L.
,
Ichchou
,
M. N.
, and
Jezequel
,
L.
,
1997
, “
Energy Flow Analysis for Curved Beams
,”
J. Acoust. Soc. Am.
,
102
(
2
), pp.
943
954
.10.1121/1.419913
23.
Kang
,
B.
, and
Riedel
,
C.
,
2012
, “
Coupling of In-Plane Flexural, Tangential, and Shear Wave Modes of a Curved Beam
,”
ASME J. Vib. Acoust.
,
134
, p.
011001
.10.1115/1.4004676
24.
Kang
,
B.
, and
Riedel
,
C.
,
2011
, “
On the Validity of Planar, Thick Curved Beam Models Derived With Respect to Centroidal and Neutral Axes
,”
Wave Motion
,
49
(
2011
), pp.
1
23
.10.1016/j.wavemoti.2011.06.003
25.
Wu
,
C.
, and
Lundberg
,
B.
,
1996
, “
Reflection and Transmission of the Energy of Harmonic Elastic Waves in a Bent Bar
,”
J. Sound Vib.
,
190
(
4
), pp.
645
659
.10.1006/jsvi.1996.0083
26.
Chouvion
,
B.
,
Fox
,
C.
,
McWilliam
,
S.
, and
Popov
,
A.
,
2010
, “
In-Plane Free Vibration Analysis of Combined Ring-Beam Structural Systems by Wave Propagation
,”
J. Sound Vib.
,
329
(
24
), pp.
5087
5104
.10.1016/j.jsv.2010.05.023
27.
Chouvion
,
B.
,
Popov
,
A.
,
McWilliam
,
S.
, and
Fox
,
C.
,
2011
, “
Vibration Modelling of Complex Waveguide Structures
,”
Comput. Struct.
,
89
(
11–12
), pp.
1253
1263
.10.1016/j.compstruc.2010.08.010
28.
Kang
,
B.
,
Riedel
,
C. H.
, and
Tan
,
C. A.
,
2003
, “
Free Vibration Analysis of Planar Curved Beams by Wave Propagation
,”
J. Sound Vib.
,
260
(
1
), pp.
19
44
.10.1016/S0022-460X(02)00898-2
29.
Mead
,
D.
,
1994
, “
Waves and Modes in Finite Beams: Application of the Phase-Closure Principle
,”
J. Sound Vib.
,
171
(
5
), pp.
695
702
.10.1006/jsvi.1994.1150
30.
Riedel
,
C. H.
, and
Kang
,
B.
,
2006
, “
Free Vibration of Elastically Coupled Dual-Span Curved Beams
,”
J. Sound Vib.
,
290
(
3
), pp.
820
838
.10.1016/j.jsv.2005.04.016
31.
Ojalvo
,
I.
,
1962
, “
Coupled Twist-Bending Vibrations of Incomplete Elastic Rings
,”
Int. J. Mech. Sci.
,
4
(
1
), pp.
53
72
.10.1016/0020-7403(62)90006-1
32.
Harland
,
N.
,
Mace
,
B.
, and
Jones
,
R.
,
2001
, “
Wave Propagation, Reflection and Transmission in Tunable Fluid-Filled Beams
,”
J. Sound Vib.
,
241
(
5
), pp.
735
754
.10.1006/jsvi.2000.3316
33.
Wittrick
,
W.
, and
Williams
,
F.
,
1971
, “
A General Algorithm for Computing Natural Frequencies of Elastic Structures
,”
Quart. J. Mech. Appl. Math.
,
24
(
3
), pp.
263
284
.10.1093/qjmam/24.3.263
You do not currently have access to this content.