A nonlinear hybrid discrete-continuous dynamic model is established to analyze the steady-state response of a pulley-belt system with a one-way clutch and belt bending stiffness. For the first time, the translating belt spans in pulley-belt systems coupled with one-way clutches are modeled as axially moving viscoelastic beams. Moreover, the model considers the rotations of the driving pulley, the driven pulley, and the accessory. The differential quadrature and integral quadrature methods are developed for space discretization of the nonlinear integropartial-differential equations in the dynamic model. Furthermore, the four-stage Runge–Kutta algorithm is employed for time discretization of the nonlinear piecewise ordinary differential equations. The time series are numerically calculated for the driven pulley, the accessory, and the translating belt spans. Based on the time series, the fast Fourier transform is used for obtaining the natural frequencies of the nonlinear vibration. The torque-transmitting directional behavior of the one-way clutch is revealed by the steady-state of the clutch torque in the primary resonances. The frequency-response curves of the translating belt, the driven pulley, and the accessory show that the one-way clutch reduces the resonance of the pulley-belt system. Furthermore, the belt cross section's aspect ratio significantly affects the dynamic response.

References

1.
Cassidy
,
R. L.
,
Fan
,
S. K.
,
MacDonald
,
R. S.
, and
Samson
,
W. F.
,
1979
, “
Serpentine—Extended Life Accessory Drive
,”
SAE
Paper No. 790699.10.4271/790699
2.
Abrate
,
S.
,
1992
, “
Vibrations of Belts and Belt Drives
,”
Mech. Mach. Theory
,
27
(
6
), pp.
645
659
.10.1016/0094-114X(92)90064-O
3.
Chen
,
L. Q.
,
2005
, “
Analysis and Control of Transverse Vibrations of Axially Moving Strings
,”
Appl. Mech. Rev.
,
58
(
2
), pp.
91
116
.10.1115/1.1849169
4.
Kong
,
L.
, and
Parker
,
R. G.
,
2003
, “
Equilibrium and Belt-Pulley Vibration Coupling in Serpentine Belt Drives
,”
ASME J. Appl. Mech.
,
70
(
5
), pp.
739
750
.10.1115/1.1598477
5.
Vernay
,
P.
,
Ferraris
,
G.
,
Delbez
,
A.
, and
Ouplomb
,
P.
,
2001
, “
Transient Behaviour of a Sprag-Type Over-Running Clutch: An Experimental Study
,”
J. Sound Vib.
,
248
(
3
), pp.
567
572
.10.1006/jsvi.2001.3700
6.
Lewicki
,
D. G.
,
DeSmidt
,
H.
,
Smith
,
E. C.
, and
Bauman
,
S. W.
,
2013
, “
Dynamics of a Dual-Clutch Gearbox System: Analysis and Experimental Validation
,”
J. Am. Helicopter Soc.
,
58
(
1
), pp.
17
28
.10.4050/JAHS.58.012004
7.
Peeken
,
H. J.
, and
Gold
,
P. W.
,
1996
, “
Coupling and Clutches-State of the Art
,”
Proceedings of the International Conference on Gears
,
Dusseldorf, Germany
, April 22–24, pp.
47
60
.
8.
Leamy
,
M. J.
, and
Wasfy
,
T. M.
,
2002
, “
Transient and Steady-State Dynamic Finite Element Modeling of Belt-Drives
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
4
), pp.
575
581
.10.1115/1.1513793
9.
Mote
,
C. D.
, Jr.
, and
Wu
,
W. Z.
,
1985
, “
Vibration Coupling in Continuous Belt and Band Systems
,”
J. Sound Vib.
,
102
(
1
), pp.
1
9
.10.1016/S0022-460X(85)80099-7
10.
Wang
,
K. W.
, and
Mote
,
C. D.
, Jr
.,
1986
, “
Vibration Coupling Analysis of Band/Wheel Mechanical Systems
,”
J. Sound Vib.
,
109
(
2
), pp.
237
258
.10.1016/S0022-460X(86)80006-2
11.
Ulsoy
,
A. G.
,
Whitsell
,
J. E.
, and
Hooven
,
M. D.
,
1985
, “
Design of Belt-Tensioner Systems for Dynamic Stability
,”
ASME J. Vib. Acoust.
,
107
(
3
), pp.
282
290
.10.1115/1.3269258
12.
Hwang
,
S. J.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1994
, “
Rotational Response and Slip Prediction of Serpentine Belt Drive Systems
,”
ASME J. Vib. Acoust.
,
116
(
1
), pp.
71
78
.10.1115/1.2930400
13.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1997
, “
Design and Analysis of Automotive Serpentine Belt Drive Systems for Steady-State Performance
,”
ASME J. Mech. Des.
,
119
(
2
), pp.
162
168
.10.1115/1.2826231
14.
Beikmann
,
R. S.
,
Perkins
,
N. C.
, and
Ulsoy
,
A. G.
,
1996
, “
Free Vibration of Serpentine Belt Drive Systems
,”
ASME J. Vib. Acoust.
,
118
(
3
), pp.
406
413
.10.1115/1.2888197
15.
Leamy
,
M. J.
, and
Perkins
,
N. C.
,
1998
, “
Nonlinear Periodic Response of Engine Accessory Drives With Dry Friction Tensioners
,”
ASME J. Vib. Acoust.
,
120
(
4
), pp.
909
916
.10.1115/1.2893919
16.
Zhang
,
L.
, and
Zu
,
J. W.
,
1999
, “
Modal Analysis of Serpentine Belt Drive Systems
,”
J. Sound Vib.
,
222
(
2
), pp.
259
279
.10.1006/jsvi.1998.2078
17.
Zhang
,
L.
, and
Zu
,
J. W.
,
2000
, “
One-to-One Auto-Parametric Resonance in Serpentine Belt Drive Systems
,”
J. Sound Vib.
,
232
(
4
), pp.
783
806
.10.1006/jsvi.1999.2764
18.
Li
,
X. J.
, and
Chen
,
L. Q.
,
2008
, “
Modal Analysis of Coupled Vibration of Belt Drive Systems
,”
Appl. Math. Mech. Engl. Ed.
,
29
(
1
), pp.
9
13
.10.1007/s10483-008-0102-x
19.
Shangguan
,
W. B.
,
Feng
,
X.
,
Lin
,
H.
, and
Yang
,
J.
,
2013
, “
A Calculation Method for Natural Frequencies and Transverse Vibration of a Belt Span in Accessory Drive Systems
,”
Proc. Inst. Mech. Eng., Part C
,
227
(10), pp.
2268
-2279.10.1177/0954406212474152
20.
Bechtel
,
S. E.
,
Vohra
,
S.
,
Jacob
,
K. I.
, and
Carlson
,
C. D.
,
2000
, “
The Stretching and Slipping of Belts and Fibers on Pulleys
,”
ASME J. Appl. Mech.
,
67
(
1
), pp.
197
206
.10.1115/1.321164
21.
Rubin
,
M. B.
,
2000
, “
An Exact Solution for Steady Motion of an Extensible Belt in Multipulley Belt Drive Systems
,”
ASME J. Mech. Des.
,
122
, pp.
311
316
.10.1115/1.1288404
22.
Kong
,
L.
, and
Parker
,
R. G.
,
2004
, “
Coupled Belt-Pulley Vibration in Serpentine Drives With Belt Bending Stiffness
,”
ASME J. Appl. Mech.
,
71
(
1
), pp.
109
119
.10.1115/1.1641064
23.
Zhu
,
F.
, and
Parker
,
R. G.
,
2008
, “
Influence of Tensioner Dry Friction on the Vibration of Belt Drives With Belt Bending Stiffness
,”
ASME J. Vib. Acoust.
,
130
(
1
), p.
011002
.10.1115/1.2775510
24.
Scurtu
,
P. R.
,
Clark
,
M.
, and
Zu
,
J. W.
,
2012
, “
Coupled Longitudinal and Transverse Vibration of Automotive Belts Under Longitudinal Excitations Using Analog Equation Method
,”
J. Vib. Control
,
18
(
9
), pp.
1336
1352
.10.1177/1077546311418866
25.
Chen
,
L. Q.
, and
Ding
,
H.
,
2010
, “
Steady-State Transverse Response in Planar Vibration of Axially Moving Viscoelastic Beams
,”
ASME J. Vib. Acoust.
,
132
(
1
), p.
011009
.10.1115/1.4000468
26.
Ding
,
H.
,
Zhang
,
G. C.
,
Chen
,
L. Q.
, and
Yang
S. P.
,
2012
, “
Forced Vibrations of Supercritically Transporting Viscoelastic Beams
,”
ASME J. Vib. Acoust.
,
134
(
5
), p.
051007
.10.1115/1.4006184
27.
Bellman
,
R.
,
Kashef
,
B. G.
, and
Casti
,
J.
,
1972
, “
Differential Quadrature: A Technique for the Rapid Solution of Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
10
(
1
), pp.
40
52
.10.1016/0021-9991(72)90089-7
28.
Malik
,
M.
, and
Bert
,
C. W.
,
1994
, “
Differential Quadrature Solutions for Steady-State Incompressible and Compressible Lubrication Problems
,”
ASME J. Tribol.
,
116
(
1
), pp.
296
302
.10.1115/1.2927214
29.
Tanaka
,
M.
, and
Chen
,
W.
,
2001
, “
Dual Reciprocity BEM Applied to Transient Elastodynamic Problems With Differential Quadrature Method in Time
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
18–19
), pp.
2331
2347
.10.1016/S0045-7825(00)00237-1
30.
Bert
,
C. W.
, and
Malik
,
M.
,
1997
, “
Transient Analysis of Gas-Lubricated Journal Bearing Systems by Differential Quadrature
,”
ASME J. Tribol.
,
119
(
1
), pp.
91
99
.10.1115/1.2832489
31.
Hamed
,
S.
, and
Ghader
,
R.
,
2009
, “
Comparison of Generalized Differential Quadrature and Galerkin Methods for the Analysis of Micro-Electro-Mechanical Coupled Systems
,”
Comm. Nonlin. Sci. Num. Simul.
,
14
(
6
), pp.
2807
2816
.10.1016/j.cnsns.2008.07.016
32.
King
,
R.
, and
Monahan
,
R.
,
1999
, “
Alternator Pulley With Integral Overrunning Clutch for Reduction of Belt Noise
,” SAE International Congress and Exposition,
Detroit, MI
, March 1–4,
SAE
Tecnical Paper 1999-01-0643.10.4271/1999-01-0643
33.
Deur
,
J.
,
Asgari
,
J.
,
Hrovat
,
D.
, and
Kovač
,
P.
,
2005
, “
Modeling and Analysis of Automatic Transmission Engagement Dynamics-Linear Case
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
2
), pp.
263
277
.10.1115/1.2192827
34.
Xu
,
T.
, and
Lowen
,
G. G.
,
1994
, “
A Mathematical Model of an Over-Running Sprag Clutch
,”
Mech. Mach. Theory
,
29
(
1
), pp.
11
23
.10.1016/0094-114X(94)90016-7
35.
Toshihiro
,
Y.
,
Taisuke
,
T.
,
Yuki
,
S.
, and
Shuzo
,
O.
,
2012
, “
Development of Combined-Type Continuous Variable Transmission With Quadric Crank Chains and One-Way Clutches
,”
SICE Annual Conference (SICE)
, Akita, Japan, August 20–23, pp.
2151
2156
.
36.
Zhu
,
F.
, and
Parker
,
R. G.
,
2005
, “
Non-Linear Dynamics of a One-Way Clutch in Belt–Pulley Systems
,”
J. Sound Vib.
,
279
(
1–2
), pp.
285
308
.10.1016/j.jsv.2003.11.031
37.
Zhu
,
F.
, and
Parker
,
R. G.
,
2006
, “
Perturbation Analysis of a Clearance-Type Nonlinear System
,”
J. Sound Vib.
,
292
(
3–5
), pp.
969
979
.10.1016/j.jsv.2005.08.025
38.
Mockensturm
,
E. M.
, and
Balaji
,
R.
,
2005
, “
Piece-Wise Linear Dynamic Systems With One-Way Clutches
,”
ASME J. Vib. Acoust.
,
127
(
5
), pp.
475
482
.10.1115/1.1897737
39.
Balaji
,
R.
, and
Mockensturm
,
E. M.
,
2005
, “
Dynamic Analysis of a Front-End Accessory Drive With a Decoupler Isolator
,”
Int. J. Vehicle Des.
,
39
(
3
), pp.
208
231
.10.1504/IJVD.2005.008472
40.
Cheon
,
G. J.
,
2007
, “
Nonlinear Behavior Analysis of Spur Gear Pairs With a One-Way Clutch
,”
J. Sound Vib.
,
301
(
3–5
), pp.
760
776
.10.1016/j.jsv.2006.10.040
41.
Zhu
,
F.
, and
Parker
,
R. G.
,
2008
, “
Piece-Wise Linear Dynamic Analysis of Serpentine Belt Drives With a One-Way Clutch
,”
Proc. Inst. Mech. Eng., Part C
,
222
(7), pp.
1165
1176
.10.1243/09544062JMES578
42.
Shangguan
,
W. B.
, and
Zeng
,
X. K.
,
2013
, “
Modeling and Validation of Rotational Vibration Responses for Accessory Drive System—Part II: Simulations and Analyses
,”
ASME J. Vib. Acoust.
,
135
(
3
), p.
031003
.10.1115/1.4023140
43.
Chen
,
W.
,
Shu
,
C.
,
Hec
,
W.
, and
Zhong
,
T.
,
2000
, “
The Application of Special Matrix Product to Differential Quadrature Solution of Geometrically Nonlinear Bending of Orthotropic Rectangular Plates
,”
Comput. Struct.
,
74
(
1
), pp.
65
76
.10.1016/S0045-7949(98)00320-4
44.
Wang
,
B.
,
2012
, “
Asymptotic Analysis on Weakly Forced Vibration of Axially Moving Viscoelastic Beam Constituted by Standard Linear Solid Model
,”
Appl. Math. Mech. Engl. Ed.
,
33
(
6
),
817
828
.10.1007/s10483-012-1588-8
45.
Daneshjou
,
K.
,
Talebitooti
,
M.
, and
Talebitooti
,
R.
,
2013
, “
Free Vibration and Critical Speed of Moderately Thick Rotating Laminated Composite Conical Shell Using Generalized Differential Quadrature Method
,”
Appl. Math. Mech. Engl. Ed.
,
34
(
4
), pp.
437
456
.10.1007/s10483-013-1682-8
46.
Ding
,
H.
, and
Chen
,
L. Q.
,
2010
, “
Galerkin Methods for Natural Frequencies of High-Speed Axially Moving Beams
,”
J. Sound Vib.
,
329
(
17
), pp.
3484
3494
.10.1016/j.jsv.2010.03.005
47.
Leamy
,
M. J.
,
2005
, “
On a Perturbation Method for the Analysis of Unsteady Belt-Drive Operation
,”
ASME J. Appl. Mech.
,
72
(
4
), pp.
570
580
.10.1115/1.1940660
48.
Čepon
,
G.
, and
Boltezar
,
M.
,
2009
, “
Dynamics of a Belt-Drive System Using a Linear Complementarity Problem for the Belt-Pulley Contact Description
,”
J. Sound Vib.
,
319
(
3–5
), pp.
1019
1035
.10.1016/j.jsv.2008.07.005
49.
Ding
,
H.
,
Zhang
,
G. C.
, and
Chen
,
L. Q.
,
2012
, “
Supercritical Vibration of Nonlinear Coupled Moving Beams Based on Discrete Fourier Transform
,”
Int. J. Non-Linear Mech.
,
47
(
10
), pp.
1095
1104
.10.1016/j.ijnonlinmec.2011.09.010
50.
Tonoli
,
A.
,
Zenerino
,
E.
, and
Amati
,
N.
,
2013
, “
Modeling the Flexural Dynamic Behavior of Axially Moving Continua by Using the Finite Element Method
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011012
.10.1115/1.4025551
You do not currently have access to this content.