This paper presents an linear quadratic Gaussian (LQG)-based robust control strategy for active noise reduction in a 3D enclosure wherein acoustic-structure interaction dynamics is present. The acoustic disturbance is created by the piezo-actuated vibrating boundary surface of the enclosure. The control signal is generated by the speaker which is noncollocated with the sensing microphone mounted inside the enclosure. The dynamic model of the system is obtained using frequency-domain system identification techniques. The state weighting matrix in the LQG cost function is determined analytically in the closed-form which allows the control designer to directly penalize the total acoustic energy of the system. The robustness of the controller is also ensured to guarantee the closed-loop stability against the unmodeled dynamics and parametric uncertainties. Simulation and experiment results are given which demonstrate the effectiveness of the proposed control methodology.

References

1.
Nelson
,
P. A.
, and
Elliott
,
S. J.
,
1992
,
Active Control of Sound
,
Academic Press
, London.
2.
Pota
,
H. R.
, and
Kelkar
,
A. G.
,
2001
, “
Modelling and Control of Acoustic Ducts
,”
ASME J. Vib. Acoust.
,
123
(1), pp.
2
10
.10.1115/1.1311793
3.
Stephen
,
E.
,
2001
,
Signal Processing for Active Control
,
Academic Press
, London.
4.
Jones
,
J. D.
, and
Fuller
,
C. R.
,
1990
, “
Active Control of Structurally-Coupled Sound Fields in Elastic Cylinders by Vibrational Force Inputs
,”
Int. J. Anal. Exp. Modal Anal.
,
5
(
3
), pp.
123
140
.
5.
Banks
,
H. T.
,
Silcox
,
R. J.
, and
Smith
,
R. C.
,
1992
,
“The Modeling and Control of Acoustic/Structure Interaction Problems Via Piezoceramic Actuators: 2D Numerical Examples,”
ICASE, NASA Langley Research Center, Hampton, VA, NASA Report No. 92–17.
6.
Banks
,
H. T.
,
Brown
,
D. E.
,
Smith
,
R. C.
,
Metcalf
, V
. L.
,
Wang
,
Y.
, and
Silcox
,
R. J.
,
1994
, “
Noise Control in a 3D Structural Acoustic System: Numerical and Experimental Implementation of a PDE-Based Methodology
,”
33rd IEEE Conference on Decision and Control
, Lake Buena Vista, FL, December 14–16, pp.
305
310
.10.1109/CDC.1994.410912
7.
Cox
,
D. E.
,
Gibbs
,
G. P.
,
Clark
,
R. L.
, and
Vipperman
,
J. S.
,
1999
, “
Experimental Robust Control of Structural Acoustic Radiation
,”
ASME J. Vib. Acoust.
,
121
(
4
), pp.
433
440
.10.1115/1.2893999
8.
Banks
,
H. T.
,
Demetriou
,
M. A.
, and
Smith
,
R. C.
,
1996
, “
An H∞/MinMax Periodic Control in a Two-Dimensional Structural Acoustic Model With Piezoceramic Actuators
,”
IEEE Trans. Autom. Control
,
41
(
7
), pp.
943
959
.10.1109/9.508899
9.
Lin
,
J.-Y.
, and
Luo
,
Z.-L.
,
2000
, “
Internal Model-Based LQG/H∞ Design of Robust Active Noise Controllers for an Acoustic Duct System
,”
IEEE Trans. Controls Syst. Technol.
,
8
(
5
), pp.
864
872
.10.1109/87.865860
10.
Petersen
, I
. R.
, and
Pota
,
H. R.
,
2000
, “
Experiments in Feedback Control of an Acoustic Duct
,”
IEEE International Conference on Control Applications
, Anchorage, AK, September 25–27, pp.
261
266
.10.1109/CCA.2000.897434
11.
Fang
,
B.
,
Kelkar
,
A. G.
, and
Joshi
,
S. M.
,
2002
, “
Modelling and Control of Acoustic-Structure Interaction in 3D Enclosure
,”
41st IEEE Conference on Decision and Control
, Las Vegas, NV, December 10-13, pp.
873
878
.10.1109/CDC.2002.1184617
12.
Liu
,
F.
,
2002
, “
Active Feedback Control of Acoustic Noise in 3D Enclosures
,” M.S. thesis, Iowa State University, Ames, IA.
13.
Fahy
,
F.
,
1987
,
Sound and Structural Vibration
,
Academic Press
, London.
14.
Juang
,
J.-N.
,
1994
,
Applied System Identification
,
Prentice-Hall Inc
, Hoboken, NJ.
15.
Koopmann
,
G. H.
, and
Fahnline
,
J. B.
,
1997
,
Designing Quiet Structure—A Sound Power Minimization Approach
,
Academic Press
, London.
16.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2005
,
Multivariable Feedback Control Analysis and Design
, 2nd ed.,
John Wiley
, New York.
You do not currently have access to this content.