In previous investigations of the vibro-acoustic characteristics of a submerged cylindrical shell in a flow field, the fluid viscosity was usually ignored. In this paper, the effect of fluid viscosity on the vibrational dispersion characteristics of an infinite circular cylindrical shell immersed in a viscous acoustic medium and subject to hydrostatic pressure is studied. The Flügge's thin shell theory for an isotropic, elastic, and thin cylindrical shell is employed to obtain the equations of motion of the structure. Together with the wave equations for the viscous flow field as well as continuity conditions at the interface, the dispersion equation of the coupled system is derived. Numerical analysis based on a winding-number integral method is conducted to solve the dispersion equation for the shell loaded with viscous fluids with varying levels of viscosity. Then the variations of the dispersion characteristic, the amplitude ratio of complex waves and the relative difference parameter against the nondimensional axial wave number in the coupled system with different circumferential mode numbers are discussed in detail. It is found that the influence of fluid viscosity on dispersion characteristics of the propagating waves is more significant in the low-frequency range than at high frequencies. As for the complex waves, the amount of the waves in the coupled system and the cut-off frequency is dependant on the fluid viscosity coefficients.

References

1.
Junger
,
M. C.
,
1952
, “
Radiation Loading of Cylindrical and Spherical Surfaces
,”
J. Acoust. Soc. Am.
,
24
(
3
), pp.
288
289
.10.1121/1.1906892
2.
Junger
,
M. C.
,
1952
, “
Vibrations of Elastic Shells in a Fluid Medium and the Associated Radiation of Sound
,”
ASME J. Appl. Mech.
,
19
(
4
), pp.
439
445
.
3.
Scott
,
J. F. M.
,
1988
, “
The Free Modes of Propagation of an Infinite Fluid-Loaded Thin Cylindrical Shell
,”
J. Sound Vib.
,
125
(
2
), pp.
241
280
.10.1016/0022-460X(88)90282-9
4.
Guo
,
Y. P.
,
1994
, “
Approximate Solutions of the Dispersion Equation for Fluid-Loaded Cylindrical Shells
,”
J. Acoust. Soc. Am.
,
95
(
3
), pp.
1435
1440
.10.1121/1.408585
5.
Zuo
,
Y.
,
Zhang
,
X.
, and
Xu
,
M.
,
1997
, “
Dispersion Characteristics of an Infinite Thin Cylindrical Shell Immersed in Acoustic Medium
,”
J. Huazhong Univ. Sci. Technol.
,
25
(
6
), pp.
37
39
.
6.
Liu
,
Z.
,
Li
,
T.
, and
Liu
,
J.
,
2009
, “
Characteristics of the Frequency Dispersion in Cylindrical Shells Filled With Fluid Considering Hydrostatic Pressure
,”
J. Ship Mech.
,
13
(
4
), pp.
635
640
.10.3969/j.issn.1007-7294.2009.04.018
7.
Yi
,
W.
,
2011
, “
The Studies of Biologically Functional Effect of Shear Stress on Human Bone Mesenchymal Stem Cells Molecular Mechanism Involved
,” M.D. thesis, The Fourth Military Medical University, Xi'an, China.
8.
Dong
,
Q.
,
Xia
,
Q.
,
Zhou
,
J. J.
,
Ma
,
H.
,
Wang
,
Y.
,
Liao
,
J.
, and
Liang
,
X.
,
2013
, “
The Expression of Cathepsins K in Cultured Osteoclasts After Fluid Shear Stress Stimulation
,”
J. Pract. Stomat.
,
29
(
4
), pp.
459
462
.10.3969/j.issn.1001-3733.2013.04.001
9.
Liu
,
Z.
,
Li
,
T.
,
Zhu
,
X.
, and
Zhang
,
J.
,
2011
, “
The Effect of Hydrostatic Pressure on Input Power Flow in Submerged Ring-Stiffened Cylindrical Shells
,”
J. Ship Mech.
,
15
(
3
), pp.
301
312
.10.3969/j.issn.1007-7294.2011.03.011
10.
Flügge
,
W.
,
1973
,
Stress in Shells
,
Springer-Verlag
,
New York
.
11.
Hasheminejad
,
S. M.
, and
Geers
,
T. L.
,
1993
, “
Modal Impedance for Two Spheres in a Thermovicous Fluid
,”
J. Acoust. Soc. Am.
,
94
(
4
), pp.
2205
2214
.10.1121/1.407491
12.
Hasheminejad
,
S. M.
, and
Safari
,
N.
,
2005
, “
Acoustic Scattering From Viscoelastically Coated Spheres and Cylinders in Viscous Fluids
,”
J. Sound Vib.
,
280
(
1–2
), pp.
101
125
.10.1016/j.jsv.2003.12.027
13.
Morse
,
P. M.
, and
Ingard
,
K. U.
,
1968
,
Theoretical Acoustics
,
McGraw-Hill
,
New York
, pp.
179
180
.
14.
He
,
Z. Y.
,
1983
,
Hydrodynamic Wave Propagation Problems
,
National Defence Industry Press
,
Beijing, China
, pp.
124
125
.
15.
Lin
,
W. H.
, and
Raptis
,
A. C.
,
1983
, “
Acoustic Scattering by Elastic Solid Cylinders and Spheres in Viscous Fluids
,”
J. Acoust. Soc. Am.
,
73
(
3
), pp.
736
748
.10.1121/1.389039
16.
Lin
,
W. H.
, and
Raptis
,
A. C.
,
1986
, “
Sound Scattering From a Thin Rod in a Viscous Medium
,”
J. Acoust. Soc. Am.
,
79
(
6
), pp.
1693
1700
.10.1121/1.393230
17.
Brazier-Smith
,
P. R.
, and
Scott
,
J. F. M.
,
1991
, “
On the Determination of the Roots of Dispersion Equations by Use of Winding-Number Integrals
,”
J. Sound Vib.
,
145
(
3
), pp.
503
510
.10.1016/0022-460X(91)90119-5
18.
Wang
,
Y.
, and
Zheng
,
G.
,
2013
, “
Vibration Power Flow Analysis of a Submerged Constrained Layer Damping Cylindrical Shell
,”
ASME J. Vib. Acoust.
,
136
(
1
), p.
011005
.10.1115/1.4025443
19.
Ivansson
,
S.
, and
Karasalo
,
I.
,
1993
, “
Computation of Modal Wavenumbers Using an Adaptive Winding-Number Integral Method With Error Control
,”
J. Sound Vib.
,
16
(
1
), pp.
173
180
.10.1016/0022-460X(93)90410-D
20.
Liu
,
Z.
,
Li
,
T.
,
Zhang
,
J.
, and
Zhu
,
X.
,
2010
, “
The Effect of Hydrostatic Pressure Fields on the Dispersion Characteristics of Fluid-Shell Coupled System
,”
J. Mar. Sci. Appl.
,
9
(
4
), pp.
129
136
.10.1007/s11804-010-9010-3
21.
Pinna
,
R.
, and
Ronalds
,
B. F.
,
2000
, “
Hydrostatic Buckling of Shells With Various Boundary Conditions
,”
J. Constr. Steel Res.
,
56
(
1
), pp.
l
16
.10.1016/S0143-974X(99)00104-2
22.
Li
,
X.
,
2008
, “
Study on Free Vibration Analysis of Circular Cylindrical Shells Using Wave Propagation
,”
J. Sound Vib.
,
311
(
3–5
), pp.
667
682
.10.1016/j.jsv.2007.09.023
You do not currently have access to this content.