The impact of cavity geometry on the source of acoustic resonance (Helmholtz or quarter-wave) for synthetic jet type cavities is presented. The cavity resonance was measured through externally excited microphone measurements. It was found that, for pancake-shaped cavities, the Helmholtz resonance equation was inadequate (off by more than 130%) at predicting the acoustic cavity resonances associated with synthetic jet actuation, whereas a two-dimensional quarter-wave resonance was accurate to 15%. The changes in the geometry (cavity diameter, cavity height, and orifice length) could alter the cavity resonance by up to 50%, and a finite element solver was accurate at predicting this resonance in all cases. With better knowledge of the phenomena governing the acoustic resonance, prediction of the cavity resonance can become more accurate and improvements to current prediction tools can be made.

References

1.
Glezer
,
A.
, and
Amitay
,
M.
,
2002
, “
Synthetic Jets
,”
Annu. Rev. Fluid Mech.
,
34
(
1
), pp.
503
529
.10.1146/annurev.fluid.34.090501.094913
2.
Chen
,
F. J.
,
Yao
,
C.
,
Beele
,
G. B.
,
Bryant
,
R. G.
, and
Fox
,
R. L.
,
2000
, “
Development of Synthetic Jet Actuators for Active Flow Control at NASA Langley
,”
AIAA
Paper No. 2000-2405.10.2514/6.2000-2405
3.
Ugrina
,
S.
, and
Flatau
,
A.
,
2004
, “
Investigation of Synthetic Jet Actuator Design Parameters
,”
Proc. SPIE
,
5390
, pp.
284
296
.10.1117/12.547541
4.
Gomes
,
L.
,
Crowther
,
W.
, and
Wood
,
N.
,
2006
, “
Towards a Practical Piezoceramic Diaphragm Based Synthetic Jet Actuator for High Subsonic Applications: Effect of Chamber and Orifice Depth on Actuator Peak Velocity
,”
AIAA
Paper No. 2006-2859.10.2514/6.2006-2859
5.
Gomes
,
L.
,
2009
, “
On the Modelling of Anisotropic Piezoelectric Diaphragms for the Development of High Subsonic Synthetic Jet Actuators
,” Ph.D. thesis, University of Manchester, Manchester, UK.
6.
Van Buren
,
T.
,
2013
, “
Synthetic Jet Actuator Development and in Depth Exploration
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, New York.
7.
Helmholtz
,
H.
,
1875
,
The Sensations of Tone as a Physiological Basis for the Theory of Music
,
Longsmans, Green and Co.
,
New York
.
8.
Gallas
,
Q.
,
Holman
,
R.
,
Nishida
,
T.
,
Carroll
,
B.
,
Sheplak
,
M.
, and
Cattafesta
,
L.
,
2003
, “
Lumped Element Modeling of Piezoelectric-Driven Synthetic Jet Actuators
,”
AIAA J.
,
41
(
2
), pp.
240
247
.10.2514/2.1936
9.
Tang
,
H.
, and
Zhong
,
S.
,
2009
, “
Lumped Element Modeling of Synthetic Jet Actuators
,”
Aerosp. Sci. Technol.
,
13
(
6
), pp.
331
339
.10.1016/j.ast.2009.06.004
10.
Holman
,
R.
,
Utturkar
,
Y.
,
Mittal
,
R.
,
Smith
,
B.
, and
Cattafesta
,
L.
,
2005
, “
Formation Criterion for Synthetic Jets
,”
AIAA J.
,
43
(
10
), pp.
2110
2115
.10.2514/1.12033
11.
Pavlova
,
A.
, and
Amitay
,
M.
,
2006
, “
Electronic Cooling Using Synthetic Jet Impingement
,”
ASME J. Heat Transfer
,
128
(
9
), pp.
897
907
.10.1115/1.2241889
12.
Lockerby
,
D. A.
, and
Carpenter
,
P. W.
,
2007
, “
Is Helmholtz Resonance a Problem for Micro-Jet Actuators
,”
Flow Turbul. Combust.
,
78
(3–4), pp.
205
222
.10.1007/s10494-006-9056-0
13.
Persoons
,
T.
, and
O’Donovan
,
T. S.
,
2007
, “
A Pressure-Based Estimate of Synthetic Jet Velocity
,”
Phys. Fluids
,
19
(
12
), p.
128104
.10.1063/1.2823560
14.
Sharma
,
R. N.
,
2007
, “
Fluid Dynamics-Based Analytical Model for Synthetic Jet Actuation
,”
AIAA J.
,
45
(
8
), pp.
1841
1847
.10.2514/1.25427
15.
Chaudhari
,
M.
,
Verma
,
G.
,
Puranik
,
B.
, and
Agrawal
,
A.
,
2009
, “
Frequency Response of a Synthetic Jet Cavity
,”
Exp. Therm. Fluid Sci.
,
33
(
3
), pp.
439
448
.10.1016/j.expthermflusci.2008.10.008
16.
Bhapkar
,
U. S.
,
Srivastava
,
A.
, and
Agrawal
,
A.
,
2013
, “
Acoustic and Heat Transfer Aspects of an Inclined Impinging Synthetic Jet
,”
Int. J. Therm. Sci.
,
74
, pp.
145
155
.10.1016/j.ijthermalsci.2013.06.007
17.
Bhapkar
,
U. S.
,
Srivastava
,
A.
, and
Agrawal
,
A.
,
2014
, “
Acoustic and Heat Transfer Characteristics of an Impinging Elliptical Synthetic Jet Generated by Acoustic Actuator
,”
Int. J. Heat Mass Transfer
,
79
, pp.
12
23
.10.1016/j.ijheatmasstransfer.2014.07.083
18.
Harris
,
C. M.
, and
Feshbach
,
H.
,
1950
, “
On the Acoustics of Coupled Rooms
,”
J. Acoust. Soc. Am.
,
22
(
5
), pp.
572
578
.10.1121/1.1906653
19.
Kuttruff
,
H.
,
2009
,
Room Acoustics
,
Spon Press
,
Abingdon, UK
.
You do not currently have access to this content.