In this paper, linear viscoelastic rheological properties of acoustical damping materials are predicted. A rheological model, based on a mechanical element approach, is presented. It consists of a combination of two springs, two parabolic elements, and one dashpot (2S2P1D). This model is applied to different acoustical damping materials. Its specificity comes from the fact that elements might be linked to structural and physical features. Parameters might be experimentally determined by tests. Application of the 2S2P1D linear viscoelastic model can adequately predict the behavior of acoustical damping materials with good accuracy. If the material verifies the time–temperature superposition principle (TTSP), the proposed model can predict the behavior on a wide frequency range, even with a small number of available data.

References

1.
Zwikker
,
C.
, and
Kosten
,
C.
,
1949
,
Sound Absorbing Materials
,
Elsevier
,
Amsterdam
.
2.
Allard
,
J.
,
1993
,
Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials
,
Elsevier
,
Essex, UK
.
3.
Olny
,
X.
,
Sgard
,
F.
,
Perrot
,
C.
, and
Panneton
,
R.
,
2004
, “
Microscopic and Mesoscopic Approaches for Describing and Building Sound Absorbing Porous Materials
,”
Proceedings of the Second TUL-ENTPE Workshop
, Szklarska Poreba, Poland, Mar. 3–6, pp.
187
206
.
4.
Lind-Nordgren
,
E.
, and
Gransson
,
P.
,
2010
, “
Optimising Open Porous Foam for Acoustical and Vibrational Performance
,”
J. Sound Vib.
,
329
(
7
), pp.
753
767
.10.1016/j.jsv.2009.10.009
5.
Gourdon
,
E.
, and
Seppi
,
M.
,
2010
, “
Extension of Double Porosity Model to Porous Materials Containing Specific Porous Inclusions
,”
Acta Acust. Acust.
,
96
(
2
), pp.
275
291
.10.3813/AAA.918277
6.
Biot
,
M.
,
1956
, “
The Theory of Propagation of Elastic Waves in a Fluidsatured Porous Solid. I. Low Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
191
.10.1121/1.1908239
7.
Biot
,
M.
,
1956
, “
The Theory of Propagation of Elastic Waves in a Fluidsatured Porous Solid. II. Higher Frequency Range
,”
J. Acoust. Soc. Am.
,
28
(
2
), pp.
168
191
.10.1121/1.1908239
8.
Capps
,
R.
,
1983
, “
Dynamic Young's Moduli of Some Commercially Available Polyurethanes
,”
J. Acoust. Soc. Am.
,
73
(
6
), pp.
2000
2005
.10.1121/1.389566
9.
Oyadiji
,
S.
, and
Tomlimson
,
G.
,
1985
, “
Determination of the Complex Moduli of Viscoelastic Structural Elements by Resonance and Non-Resonance Techniques
,”
J. Sound Vib.
,
101
(
3
), pp.
277
298
.10.1016/S0022-460X(85)80129-2
10.
Corsaro
,
R.
, and
Sperling
,
L.
,
1990
,
Sound and Vibration Damping With Polymers
,
American Chemical Society
,
Washington, DC
.
11.
Pritz
,
T.
,
1994
, “
Dynamic Young's Modulus and Loss Factor of Plastic Foams for Impact Sound Isolation
,”
J. Sound Vib.
,
178
(
3
), pp.
315
322
.10.1006/jsvi.1994.1488
12.
Mariez
,
E.
,
Sahraoui
,
S.
, and
Allard
,
J.
,
1996
, “
Elastic Constants of Polyurethane Foams Skeleton for Biot Model
,”
25th International Congress on Noise Control Engineering
(Inter-Noise 96), Liverpool, UK, July 30–Aug. 2, pp.
951
954
.
13.
Dauchez
,
N.
,
Etchessahar
,
M.
, and
Sahraoui
,
S.
,
2002
, “
On Measurements of Mechanical Properties of Sound Absorbing Materials
,”
Second Biot Conference on Poromechanics
, Grenoble, France, Aug. 26–28, pp.
627
632
.
14.
Pritz
,
T.
,
1990
, “
Non-Linearity of Frame Dynamic Characteristics of Mineral and Glass Wool Materials
,”
J. Sound Vib.
,
136
(
2
), pp.
263
274
.10.1016/0022-460X(90)90855-T
15.
Panneton
,
R.
, and
Langlois
,
C.
,
2001
, “
Polynomial Relation for the Mechanical Characterization of Poroelastic Materials
,” 17th International Congress of Acoustics (ICA '01), Rome, Italy, Sept. 2–7, Paper No. 4A.08.06.
16.
Etchessahar
,
M.
,
Sahraoui
,
S.
,
Benyahia
,
L.
, and
Tassin
,
J.
,
2005
, “
Frequency Dependence of Elastic Properties of Acoustic Foams
,”
J. Acoust. Soc. Am.
,
117
(
1
), pp.
1114
1121
.10.1121/1.1857527
17.
Van der Poel
,
C.
,
1954
, “
A General System Describing the Viscoelastic Properties of Bitumens and Its Relation to Routinr Test Data
,”
J. Appl. Chem.
,
4
(
5
), pp.
231
236
.10.1002/jctb.5010040501
18.
Heukolem
,
W.
, and
Klomp
,
J.
,
1964
, “
Road Design and Dynamic Loading
,”
Proceedings of the Association of Asphalt Paving Technologists
, Ann Arbor, MI, Vol.
33
, pp.
92
125
.
19.
Sayegh
,
G.
,
1967
, “
Viscoelastic Properties of Bituminous Mixtures
,”
Second International Conference on Structural Design of Asphalt Pavement
, Ann Arbor, MI, pp.
743
755
.
20.
Havriliak
,
S.
, and
Negami
,
S.
,
1967
, “
A Complex Plane Representation of Dielectric and Mechanical Relaxation Processes in Some Polymers
,”
Polymer
,
8
, pp.
161
210
.10.1016/0032-3861(67)90021-3
21.
Hartmann
,
B.
,
Lee
,
G. F.
, and
Lee
,
J.
,
1994
, “
Loss Factor Height and Width Limits for Polymer Relaxations
,”
J. Acoust. Soc. Am.
,
95
(
1
), pp.
226
233
.10.1121/1.408355
22.
Pritz
,
T.
,
2003
, “
Five-Parameter Fractional Derivative Model for Polymeric Damping Materials
,”
J. Sound Vib.
,
265
(
5
), pp.
935
952
.10.1016/S0022-460X(02)01530-4
23.
Kim
,
S.-Y.
, and
Lee
,
D.-H.
,
2009
, “
Identification of Fractional-Derivative-Model Parameters of Viscoelastic Materials From Measured Frfs
,”
J. Sound Vib.
,
324
(
3–5
), pp.
570
586
.10.1016/j.jsv.2009.02.040
24.
ASTM
,
2010
, “Standard Test Method for Measuring Vibration-Damping Properties of Materials,” ASTM International, West Conshohocken, PA,
ASTM
Standard E756-05(2010).10.1520/E0756-05R10
25.
Jones
,
D.
,
2001
,
Handbook of Viscoelastic Vibration Damping
,
Wiley
,
New York
.
26.
Deng
,
R.
,
Davies
,
P.
, and
Bajaj
,
A.
,
2003
, “
Flexible Polyurethane Foam Modeling and Identification of Viscoelastic Parameters for Automotive Seating Applications
,”
J. Sound Vib.
,
262
(
3
), pp.
391
417
.10.1016/S0022-460X(03)00104-4
27.
Kim
,
S.-Y.
, and
Lee
,
D.-H.
,
2009
, “
Identification of Fractional-Derivative-Model Parameters of Viscoelastic Materials From Measured FRFs
,”
J. Sound Vib.
,
324
(
3–5
), pp.
570
586
.10.1016/j.jsv.2009.02.040
28.
Olard
,
F.
, and
Di Benedetto
,
H.
,
2003
, “
General ‘2S2P1D’ Model and Relation Between the Linear Viscoelastic Behaviours of Bituminous Binders and Mixes
,”
Road Mater. Pavement Des.
,
4
(
2
), pp.
185
224
.10.3166/rmpd.4.185-224
29.
Olard
,
F.
,
Di Benedetto
,
H.
, and
Vaniscote
,
J.-C.
,
2005
, “
Properties of Bituminous Mixtures at Low Temperatures and Relations With Binder Characteristics
,”
Mater. Struct.
,
38
(
1
), pp.
121
126
.10.1007/BF02480584
30.
Di Benedetto
,
H.
,
Olard
,
F.
,
Sauzéat
,
C.
, and
Delaporte
,
B.
,
2004
, “
Linear Viscoelastic Behaviour of Bituminous Materials: From Binders to Mixes
,”
Road Mater. Pavement Des.
,
5
(
Suppl. 1
), pp.
163
202
.10.1080/14680629.2004.9689992
31.
Di Benedetto
,
H.
,
Neifar
,
M.
,
Sauzéat
,
C.
, and
Olard
,
F.
,
2007
, “
Three-Dimensional Thermo-Viscoplastic Behaviour of Bituminous Materials: The DBN Model
,”
Road Mater. Pavement Des.
,
8
(
2
), pp.
285
316
.10.3166/RMPD.8.285-315
32.
Yin
,
H.
,
Buttlar
,
W.
,
Paulino
,
G.
, and
Di Benedetto
,
H.
,
2008
, “
Assessment of Existing Micro-Mechanical Models for Asphalt Mastics Considering Viscoelastic Effects
,”
Road Mater. Pavement Des.
,
9
(
1
), pp.
31
57
.10.1080/14680629.2008.9690106
33.
Delaporte
,
B.
,
Di Benedetto
,
H.
,
Chaverot
,
P.
, and
Gauthier
,
G.
,
2009
, “
Linear Viscoelastic Properties of Bituminous Materials Including New Products Made With Ultrafine Particles
,”
Road Mater. Pavement Des.
,
10
(
1
), pp.
7
38
.10.1080/14680629.2009.9690180
34.
Izzi
,
Y. M. N.
,
Mounier
,
D.
,
Ginoux
,
M.
,
Mohd
,
H.
,
Airey
,
G.
, and
Di Benedetto
,
H.
,
2013
, “
Modelling the Rheological Properties of Bituminous Binders Using the 2S2P1D Model
,”
Constr. Build. Mater.
,
38
, pp.
395
406
.10.1016/j.conbuildmat.2012.08.038
35.
Mangiafico
,
S.
,
Di Benedetto
,
H.
,
Sauzéat
,
C.
,
Olard
,
F.
,
Pouget
,
S.
, and
Planque
,
L.
,
2014
, “
New Method to Obtain Viscoelastic Properties of Bituminen Blends From Pure and Rap Binder Constituents
,”
Road Mater. Pavement Des.
,
15
(
2
), pp.
312
329
.10.1080/14680629.2013.870639
36.
Tapsoba
,
N.
,
Sauzéat
,
C.
,
Di Benedetto
,
H.
,
Baaj
,
H.
, and
Ech
,
M.
,
2014
, “
Behavior of Asphalt Mixtures Containing Rap and Shingles
,”
Road Mater. Pavement Des.
,
15
(
2
), pp.
330
347
.10.1080/14680629.2013.871091
37.
Tiouajni
,
S.
,
Di Benedetto
,
H.
,
Sauzéat
,
C.
, and
Pouget
,
S.
,
2011
, “
Approximation of Linear Viscoelastic Model by Generalized Kelvin Voigt or Generalized Maxwell Models: Application to Bituminous Materials in the 3 Dimensional Case
,”
Road Mater. Pavement Des.
,
12
(
4
), pp.
897
719
.10.1080/14680629.2011.9713899
38.
Fowler
,
B.
,
1989
, “
Interactive Characterization and Data Base Storage of Complex Modulus Data
,” Proceedings of Damping '89, West Palm Beach, FL, Feb. 8–10, Vol. 2, Paper No. FAA.
39.
Deverge
,
M.
,
Benyahia
,
L.
, and
Sahraoui
,
S.
,
2009
, “
Experimental Investigation on Pore Size Effect on the Linear Viscoelastic Properties of Acoustic Foams
,”
J. Acoust. Soc. Am.
,
126
(
3
), pp.
93
96
.10.1121/1.3186799
40.
Wojtowicki
,
J.-L.
,
Jaouen
,
L.
, and
Panneton
,
R.
,
2004
, “
New Approach for the Measurement of Damping Properties of Materials Using the Oberst Beam
,”
Rev. Sci. Instrum.
,
75
(
8
), pp.
2569
2574
.10.1063/1.1777382
41.
Williams
,
M.
,
Landel
,
R.
, and
Ferry
,
J.
,
1955
, “
The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glassforming Liquids
,”
J. Am. Chem. Soc.
,
77
(
14
), pp.
3701
3707
.10.1021/ja01619a008
42.
Booij
,
H.
, and
Thoone
,
G.
,
1982
, “
Generalization of Kramerskronig Transforms and Some Approximations of Relations Between Viscoelastic Quantities
,”
Rheol. Acta
,
21
(
1
), pp.
15
24
.10.1007/BF01520701
43.
Gergesova
,
M.
,
Zupancic
,
B.
,
Saprunov
,
I.
, and
Emri
,
I.
,
2011
, “
The Closed Form t-T-P Shifting (CFS) Algorithm
,”
J. Rheol.
,
55
(
1
), pp.
1
16
.10.1122/1.3503529
44.
Madigosky
,
W.
,
Lee
,
G.
, and
Niemiec
,
J.
,
2006
, “
A Method for Modeling Polymer Viscoelastic Data and the Temperature Shift Function
,”
J. Acoust. Soc. Am.
,
119
(
6
), pp.
3760
3765
.10.1121/1.2195292
45.
Guedes
,
R.
,
2011
, “
A Viscoelastic Model for a Biomedical Ultra-High Molecular Weight Polyethylene Using the Time-Temperature Superposition Principle
,”
Polym. Test.
,
30
(
3
), pp.
294
302
.10.1016/j.polymertesting.2011.01.006
46.
Rouleau
,
L.
,
Deu
,
J.-F.
,
Legay
,
A.
, and
Lay
,
F. L.
,
2013
, “
Application of Kramers–Kronig Relations to Time-Temperature Superposition for Viscoelastic Materials
,”
Mech. Mater.
,
65
, pp.
66
75
.10.1016/j.mechmat.2013.06.001
47.
Pritz
,
T.
,
1999
, “
Verification of Local Kramers–Kronig Relations for Complex Modulus by Means of Fractional Derivative Model
,”
J. Sound Vib.
,
228
(
5
), pp.
1145
1165
.10.1006/jsvi.1999.2495
48.
Di Benedetto
,
H.
,
Sauzéat
,
C.
, and
Sohm
,
J.
,
2009
, “
Stiffness of Bituminous Mixtures Using Ultrasonic Waves Propagation
,”
Road Mater. Pavement Des.
,
10
(
4
), pp.
789
814
.10.1080/14680629.2009.9690227
49.
Mounier
,
D.
,
Di Benedetto
,
H.
, and
Sauzéat
,
C.
,
2012
, “
Determination of Bituminous Mixtures Linear Properties Using Ultrasonic Wave Propagation
,”
Constr. Build. Mater.
,
36
, pp.
638
647
.10.1016/j.conbuildmat.2012.04.136
50.
Gudmarsson
,
A.
,
Ryden
,
N.
,
Di Benedetto
,
H.
,
Sauzéat
,
C.
,
Tapsoba
,
N.
, and
Birgisson
,
B.
,
2014
, “
Comparing Linear Viscoelastic Properties of Asphalt Concrete Measured by Laboratory Seismic and Tension-Compression Tests
,”
J. Nondestr. Eval.
,
33
(
4
), pp.
571
582
.10.1007/s10921-014-0253-9
51.
Levenberg
,
K.
,
1944
, “
A Method for the Solution of Certain Problems in Least-Squares
,”
Q. Appl. Math.
,
2
, pp.
164
168
.
52.
Marquardt
,
D.
,
1963
, “
An Algorithm for Least-Squares Estimation of Nonlinear Parameters
,”
SIAM J. Appl. Math.
,
11
(
2
), pp.
431
441
.10.1137/0111030
53.
Moré
,
J.
,
1977
, “The
Levenberg–Marquardt Algorithm: Implementation and Theory
,”
Numerical Analysis
(Lecture Notes in Mathematics, Vol. 630),
G. A.
Watson
, ed.,
Springer-Verlag
,
Heidelberg, Germany
, pp.
105
116
.10.1007/BFb0067700
54.
Gauthier
,
P.
, and
Rivaille
,
P.-Y. H.
,
2009
, “
Fitting the Smile, Smart Parameters for SABR and Heston
,” Social Science Research Network, Rochester, NY.10.1520/E0756-05R10
You do not currently have access to this content.