In recent decades, semi-active control strategies have been investigated for vibration reduction. In general, these techniques provide enhanced control performance when compared to traditional passive techniques and lower energy consumption if compared to active control techniques. In semi-active concepts, vibration attenuation is achieved by modulating inertial, stiffness, or damping properties of a dynamic system. The smart spring is a mechanical device originally employed for the effective modulation of its stiffness through the use of semi-active control strategies. This device has been successfully tested to damp aeroelastic oscillations of fixed and rotary wings. In this paper, the modeling of the smart spring mechanism is presented and two semi-active control algorithms are employed to promote vibration reduction through enhanced damping effects. The first control technique is the smart-spring resetting (SSR), which resembles resetting control techniques developed for vibration reduction of civil structures as well as the piezoelectric synchronized switch damping on short (SSDS) technique. The second control algorithm is referred to as the smart-spring inversion (SSI), which presents some similarities with the synchronized switch damping (SSD) on inductor technique previously presented in the literature of electromechanically coupled systems. The effects of the SSR and SSI control algorithms on the free and forced responses of the smart-spring are investigated in time and frequency domains. An energy flow analysis is also presented in order to explain the enhanced damping behavior when the SSI control algorithm is employed.

References

1.
Soong
,
T. T.
, and
Spencer
,
B. F.
, Jr.
,
2002
, “
Supplemental Energy Dissipation: State-of-the-Art and State-of-the-Practice
,”
Eng. Struct.
,
24
(
3
), pp.
243
259
.
2.
Spencer
,
B. F.
, Jr
., and
Nagarajaiah
,
S.
,
2003
, “
State of the Art of Structural Control
,”
J. Struct. Eng.
,
129
(
7
), pp.
845
856
.
3.
Symans
,
M. D.
, and
Constantinou
,
M. C.
,
1999
, “
Semi-Active Control Systems for Seismic Protection of Structures: A State-of-the-Art Review
,”
Eng. Struct.
,
21
(
6
), pp.
469
487
.
4.
Kurata
,
N.
,
Kobori
,
T.
,
Takahashi
,
M.
,
Ishibashi
,
T.
,
Niwa
,
N.
,
Tagami
,
J.
, and
Midorikawa
,
H.
,
2000
, “
Forced Vibration Test of a Building With Semi‐Active Damper System
,”
Earthquake Eng. Struct. Dyn.
,
29
(
5
), pp.
629
645
.
5.
Sahasrabudhe
,
S. S.
, and
Nagarajaiah
,
S.
,
2005
, “
Semi-Active Control of Sliding Isolated Bridges Using MR Dampers: An Experimental and Numerical Study
,”
Earthquake Eng. Struct. Dyn.
,
34
(
8
), pp.
965
983
.
6.
Zuo
,
L.
, and
Zhang
,
P. S.
,
2013
, “
Energy Harvesting, Ride Comfort, and Road Handling of Regenerative Vehicle Suspensions
,”
ASME J. Vib. Acoust.
,
135
(
1
), p.
011002
.
7.
Fateh
,
M. M.
, and
Alavi
,
S. S.
,
2009
, “
Impedance Control of an Active Suspension System
,”
Mechatronics
,
19
(
1
), pp.
134
140
.
8.
Yao
,
G. Z.
,
Yap
,
F. F.
,
Chen
,
G.
,
Li
,
W. H.
, and
Yeo
,
S. H.
,
2002
, “
MR Damper and Its Application for Semi-Active Control of Vehicle Suspension System
,”
Mechatronics
,
12
(
7
), pp.
963
973
.
9.
Chen
,
M. Z.
,
Hu
,
Y.
,
Li
,
C.
, and
Chen
,
G.
,
2016
, “
Application of Semi-Active Inerter in Semi-Active Suspensions Via Force Tracking
,”
ASME J. Vib. Acoust.
,
138
(
4
), p.
041014
.
10.
Qin
,
Y.
,
Zhao
,
F.
,
Wang
,
Z.
,
Gu
,
L.
, and
Dong
,
M.
,
2017
, “
Comprehensive Analysis for Influence of Controllable Damper Time Delay on Semi-Active Suspension Control Strategies
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031006
.
11.
Onoda
,
J.
,
Endot
,
T.
,
Tamaoki
,
H.
, and
Watanabe
,
N.
,
1991
, “
Vibration Suppression by Variable-Stiffness Members
,”
AIAA J.
,
29
(
6
), pp.
977
983
.
12.
Onoda
,
J.
,
Makihara
,
K.
, and
Minesugi
,
K.
,
2003
, “
Energy-Recycling Semi-Active Method for Vibration Suppression With Piezoelectric Transducers
,”
AIAA J.
,
41
(
4
), pp.
711
719
.
13.
Ledezma-Ramirez
,
D. F.
,
Ferguson
,
N. S.
, and
Brennan
,
M. J.
,
2011
, “
Shock Isolation Using an Isolator With Switchable Stiffness
,”
J. Sound Vib.
,
330
(
5
), pp.
868
882
.
14.
Ledezma-Ramirez
,
D. F.
,
Ferguson
,
N. S.
, and
Brennan
,
M. J.
,
2012
, “
An Experimental Switchable Stiffness Device for Shock Isolation
,”
J. Sound Vib.
,
331
(
23
), pp.
4987
5001
.
15.
Nitzsche
,
F.
,
2012
, “
The Use of Smart Structures in the Realization of Effective Semi-Active Control Systems for Vibration Reduction
,”
J. Braz. Soc. Mech. Sci. Eng.
,
34
, pp.
371
377
.
16.
Krishna
,
Y.
,
Sarma
,
B. S.
, and
Shrinivasa
,
U.
,
2003
, “
Shock Isolation Using Magnetostrictive Actuator
,”
Proc. SPIE
,
5062
, pp.
270
277
.
17.
Ismail
,
M. I.
, and
Ferguson
,
N. S.
,
2017
, “
Passive Shock Isolation Utilising Dry Friction
,”
Shock Vib.
,
2017
, pp.
1
21
.
18.
Yang
,
J.
,
Sun
,
S.
,
Li
,
W.
,
Du
,
H.
,
Alici
,
G.
, and
Nakano
,
M.
,
2015
, “
Development of a Linear Damper Working With Magnetorheological Shear Thickening Fluids
,”
J. Intell. Mater. Syst. Struct.
,
26
(
14
), pp.
1811
1817
.
19.
Zareh
,
S. H.
,
Matbou
,
F.
, and
Khayyat
,
A. A. A.
,
2015
, “
Experiment of New Laboratory Prototyped Magneto-Rheological Dampers on a Light Commercial Vehicle Using Neuro-Fuzzy Algorithm
,”
J. Vib. Control
,
21
(
15
), pp.
3007
3019
.
20.
Nitzsche
,
F.
,
Anant
,
G.
, and
Zimcik
,
D.
, “Structural Component Having Means for Actively Varying Its Stiffness to Control Vibrations,” U.S. Patent No.
5,973,440
.
21.
Wickramasinghe
,
V.
,
Chen
,
Y.
, and
Zimcik
,
D.
,
2008
, “
Experimental Evaluation of the Smart-Spring Impedance Control Approach for Adaptive Vibration Suppression
,”
J. Intell. Mater. Syst. Struct.
,
19
(
2
), pp.
171
179
.
22.
Yong
,
C.
,
Zimcik
,
D. G.
,
Wickramasinghe
,
V. K.
, and
Nitzsche
,
F.
,
2004
, “
Development of the Smart Spring for Active Vibration Control of Helicopter Blades
,”
J. Intell. Mater. Syst. Struct.
,
15
(
1
), pp.
37
47
.
23.
Nitzsche
,
F.
,
Harold
,
T.
,
Wickramasinghe
,
V. K.
,
Yong
,
C.
, and
Zimcik
,
D. G.
,
2005
, “
Development of a Maximum Energy Extraction Control for the Smart-Spring
,”
J. Intell. Mater. Syst. Struct.
,
16
(
11–12
), pp.
1057
1066
.
24.
Oxley
,
G.
,
Nitzsche
,
F.
, and
Feszty
,
D.
,
2009
, “
Smart-Spring Control of Vibration on Helicopter Rotor Blades
,”
J. Aircr.
,
46
(
2
), pp.
692
696
.
25.
Anusonti-Inthra
,
P.
, and
Gandhi
,
F.
,
2000
, “
Helicopter Vibration Reduction Through Cyclic Variations in Rotor Blade Root Stiffness
,”
J. Intell. Mater. Syst. Struct.
,
11
(
2
), pp.
153
166
.
26.
Nitzsche
,
F.
,
D'Assunção
,
D.
, and
De Marqui
,
C.
, Jr.
,
2015
, “
Aeroelastic Control of Non-Rotating and Rotating Wings Using the Dynamic Stiffness Modulation Principle Via Piezoelectric Actuators
,”
J. Intell. Mater. Syst. Struct.
,
26
(
13
), pp.
1656
1668
.
27.
Richard
,
C.
,
Guyomar
,
D.
,
Audigier
,
D.
, and
Ching
,
G.
,
1999
, “
Semi-Passive Damping Using Continuous Switching of a Piezoelectric Device
,”
Proc. SPIE
,
3672
, pp.
104
111
.
28.
Richard
,
C.
,
Guyomar
,
D.
,
Audigier
,
D.
, and
Bassaler
,
H.
,
2000
, “
Enhanced Semi-Passive Damping Using Continuous Switching of a Piezoelectric Device on an Inductor
,”
Proc. SPIE
,
3989
, p.
288
.
29.
Bobrow
,
J. E.
,
Jabbari
,
F.
, and
Thai
,
K.
,
1995
, “
An Active Truss Element and Control Law for Vibration Suppression
,”
Smart Mater. Struct.
,
4
(
4
), p.
264
.
30.
Jabbari
,
F.
, and
Bobrow
,
J. E.
,
2002
, “
Vibration Suppression With Resettable Device
,”
J. Eng. Mech.
,
128
(
9
), pp.
916
924
.
31.
Karnopp
,
D.
,
Crosby
,
M. J.
, and
Harwood
,
R. A.
,
1974
, “
Vibration Control Using Semi-Active Force Generators
,”
ASME J. Eng. Ind.
,
96
(
2
), pp.
619
626
.
32.
Hong
,
K. S.
,
Sohn
,
H. C.
, and
Hedrick
,
J. K.
,
2002
, “
Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardware-in-the-Loop Tuning
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
1
), pp.
158
167
.
33.
Sammier
,
D.
,
Sename
,
O.
, and
Dugard
,
L.
,
2003
, “
Skyhook and H8 Control of Semi-Active Suspensions: Some Practical Aspects
,”
Veh. Syst. Dyn.
,
39
(
4
), pp.
279
308
.
34.
Silva
,
T. M. P.
, and
De Marqui
,
C.
, Jr.
,
2016
, “
Energy Analysis of Semi-Passive Control for an Aeroelastic Plate-Like Wing Using Shunted Piezoelectric Materials
,”
J. Intell. Mater. Syst. Struct.
,
27
(
19
), pp.
2599
2615
.
35.
Chase
,
J. G.
,
Mulligan
,
K. J.
,
Gue
,
A.
,
Alnot
,
T.
,
Rodgers
,
G.
,
Mander
,
J. B.
, and
Heaton
,
D.
,
2006
, “
Re-Shaping Hysteretic Behaviour Using Semi-Active Resettable Device Dampers
,”
Eng. Struct.
,
28
(
10
), pp.
1418
1429
.
36.
Mulligan
,
K. J.
,
Chase
,
J. G.
,
Mander
,
J. B.
,
Rodgers
,
G. W.
,
Elliott
,
R. B.
,
Franco‐Anaya
,
R.
, and
Carr
,
A. J.
,
2009
, “
Experimental Validation of Semi‐Active Resettable Actuators in a ⅕th Scale Test Structure
,”
Earthquake Eng. Struct. Dyn.
,
38
(
4
), pp.
517
536
.
37.
Guyomar
,
D.
,
Richard
,
C.
,
Gehin
,
C.
, and
Audigier
,
D.
,
2000
, “
Low Consumption Damping of Planar Structures
,”
12th IEEE International Symposium on Applications of Ferroelectrics
(
ISAF
), Honolulu, HI, July 21–Aug. 2, pp.
761
764
.
38.
Guyomar
,
D.
,
Badel
,
A.
,
Lefeuvre
,
E.
, and
Richard
,
C.
,
2005
, “
Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing
,”
IEEE Trans. Ultrason., Ferroelectr. Freq. Control
,
52
(
4
), pp.
584
595
.
39.
Lefeuvre
,
E.
,
Badel
,
A.
,
Petit
,
L.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2006
, “
Semi-Passive Piezoelectric Structural Damping by Synchronized Switching on Voltage Sources
,”
J. Intell. Mater. Syst. Struct.
,
17
(
8–9
), pp.
653
660
.
40.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.
41.
Lallart
,
M.
,
Lefeuvre
,
E.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2008
, “
Self-Powered Circuit for Broadband, Multimodal Piezoelectric Vibration Control
,”
Sens. Actuators A
,
143
(
2
), pp.
377
382
.
42.
Petit
,
L.
,
Lefeuvre
,
E.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2004
, “
A Broadband Semi Passive Piezoelectric Technique for Structural Damping
,”
Proc. SPIE,
5386, pp.
414
425
.
You do not currently have access to this content.