Abstract

In this paper, the single-sided vibro-impact track nonlinear energy sink (SSVI track NES) is studied. The SSVI track NES, which is attached to a primary structure, has nonlinear behavior caused by the NES mass moving on a fixed track and impacting on the primary structure at an impact surface. Unlike previous studies of the SSVI track NES, both the horizontal and vertical dynamics of the primary structure are considered. A numerical study is carried out to investigate the way in which energy is dissipated in this system. Assuming a track shape with a quartic polynomial, an optimization procedure that considers the total energy dissipated during a time period is carried out, to determine the optimum NES mass and track parameter. It is found that there is dynamic coupling between the horizontal and vertical directions caused by the SSVI track NES motion. The vibrational energy, originally in the structure in the horizontal direction, is transferred to the vertical motion of the structure where it is dissipated. Considering that many civil and mechanical systems are particularly vulnerable to extreme loads in the horizontal direction, this energy transformation can be beneficial to prevent or limit damage to the structure. The effect on energy dissipation of the position of the impact surface in the SSVI track NES and the ratio of the vertical to horizontal stiffness in the primary structure are discussed. Numerical results demonstrate a robust and stable performance of the SSVI track NES over a wide range of stiffness ratios.

References

1.
Vakakis
,
A. F.
,
2001
, “
Inducing Passive Nonlinear Energy Sinks in Vibrating Systems
,”
ASME J. Vib. Acoust.
,
123
(
3
), pp.
324
332
. 10.1115/1.1368883
2.
Gendelman
,
O.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
M’Closkey
,
R.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part I-Dynamics of the Underlying Hamiltonian Systems
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
34
41
. 10.1115/1.1345524
3.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II-Resonance Capture
,”
ASME J. Appl. Mech.
,
68
(
1
), pp.
42
48
. 10.1115/1.1345525
4.
Gourc
,
E.
,
Seguy
,
S.
,
Michon
,
G.
,
Berlioz
,
A.
, and
Mann
,
B. P.
,
2015
, “
Quenching Chatter Instability in Turning Process With a Vibro-Impact Nonlinear Energy Sink
,”
J. Sound Vib.
,
355
(
27
), pp.
392
406
. 10.1016/j.jsv.2015.06.025
5.
Bab
,
S.
,
Khadem
,
S. E.
,
Shahgholi
,
M.
, and
Abbasi
,
A.
,
2017
, “
Vibration Attenuation of a Continuous Rotor-Blisk-Journal Bearing System Employing Smooth Nonlinear Energy Sinks
,”
Mech. Syst. Signal Process.
,
84
, pp.
128
157
. 10.1016/j.ymssp.2016.07.002
6.
Zhang
,
Y.-W.
,
Yuan
,
B.
,
Fang
,
B.
, and
Chen
,
L.-Q.
,
2017
, “
Reducing Thermal Shock-Induced Vibration of an Axially Moving Beam via a Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1159
1167
. 10.1007/s11071-016-3107-4
7.
Zhang
,
W.
,
Liu
,
Y.
,
Cao
,
S.
,
Chen
,
J.
,
Zhang
,
Z.
, and
Zhang
,
J.
,
2017
, “
Targeted Energy Transfer Between 2-D Wing and Nonlinear Energy Sinks and Their Dynamic Behaviors
,”
Nonlinear Dyn.
,
90
(
3
), pp.
1841
1850
. 10.1007/s11071-017-3767-8
8.
Lee
,
Y. S.
,
Kerschen
,
G.
,
McFarland
,
D. M.
,
Hill
,
W. J.
,
Nichkawde
,
C.
,
Strganac
,
T. W.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2007
, “
Suppressing Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part 2: Experiments
,”
AIAA J.
,
45
(
10
), pp.
2391
2400
. 10.2514/1.28300
9.
Lee
,
Y. S.
,
Vakakis
,
A.
,
Bergman
,
L.
,
McFarland
,
D. M.
, and
Kerschen
,
G.
,
2007
, “
Suppression Aeroelastic Instability Using Broadband Passive Targeted Energy Transfers, Part 1: Theory
,”
AIAA J.
,
45
(
3
), pp.
693
711
. 10.2514/1.24062
10.
Yang
,
K.
,
Zhang
,
Y.-W.
,
Ding
,
H.
,
Yang
,
T.-Z.
,
Li
,
Y.
, and
Chen
,
L.-Q.
,
2017
, “
Nonlinear Energy Sink for Whole-Spacecraft Vibration Reduction
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
021011
. 10.1115/1.4035377
11.
Nucera
,
F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2010
, “
Application of Broadband Nonlinear Targeted Energy Transfers for Seismic Mitigation of a Shear Frame: Computational Results
,”
J. Sound Vib.
,
329
(
15
), pp.
2973
2994
. 10.1016/j.jsv.2010.01.020
12.
Nucera
,
F.
,
Lo Iacono
,
F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2008
, “
Application of Broadband Nonlinear Targeted Energy Transfers for Seismic Mitigation of a Shear Frame: Experimental Results
,”
J. Sound Vib.
,
313
(
1–2
), pp.
57
76
. 10.1016/j.jsv.2007.11.018
13.
Vaurigaud
,
B.
,
Manevitch
,
L. I.
, and
Lamarque
,
C.-H.
,
2011
, “
Passive Control of Aeroelastic Instability in a Long Span Bridge Model Prone to Coupled Flutter Using Targeted Energy Transfer
,”
J. Sound Vib.
,
330
(
11
), pp.
2580
2595
. 10.1016/j.jsv.2010.12.011
14.
Wierschem
,
N. E.
,
Hubbard
,
S. A.
,
Luo
,
J.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
,
McFarland
,
D. M.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2017
, “
Response Attenuation in a Large-Scale Structure Subjected to Blast Excitation Utilizing a System of Essentially Nonlinear Vibration Absorbers
,”
J. Sound Vib.
,
389
(
17
), pp.
52
72
. 10.1016/j.jsv.2016.11.003
15.
Lu
,
Z.
,
Wang
,
Z.
,
Zhou
,
Y.
, and
Lu
,
X.
,
2018
, “
Nonlinear Dissipative Devices in Structural Vibration Control: A Review
,”
J. Sound Vib.
,
423
(
9
), pp.
18
49
. 10.1016/j.jsv.2018.02.052
16.
Kopidakis
,
G.
,
Aubry
,
S.
, and
Tsironis
,
G. P.
,
2001
, “
Targeted Energy Transfer Through Discrete Breathers in Nonlinear Systems
,”
Phys. Rev. Lett.
,
87
(
16
), p.
165501
. 10.1103/PhysRevLett.87.165501
17.
Quinn
,
D. D.
,
Gendelman
,
O.
,
Kerschen
,
G.
,
Sapsis
,
T. P.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2008
, “
Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1:1 Resonance Captures: Part I
,”
J. Sound Vib.
,
311
(
3–5
), pp.
1228
1248
. 10.1016/j.jsv.2007.10.026
18.
Sapsis
,
T. P.
,
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
Kerschen
,
G.
, and
Quinn
,
D. D.
,
2009
, “
Efficiency of Targeted Energy Transfers in Coupled Nonlinear Oscillators Associated With 1:1 Resonance Captures: Part II, Analytical Study
,”
J. Sound Vib.
,
325
(
1–2
), pp.
297
320
. 10.1016/j.jsv.2009.03.004
19.
Gendelman
,
O. V.
,
Sapsis
,
T.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2011
, “
Enhanced Passive Targeted Energy Transfer in Strongly Nonlinear Mechanical Oscillators
,”
J. Sound Vib.
,
330
(
1
), pp.
1
8
. 10.1016/j.jsv.2010.08.014
20.
Wierschem
,
N. E.
,
Quinn
,
D. D.
,
Hubbard
,
S. A.
,
Al-Shudeifat
,
M. A.
,
McFarland
,
D. M.
,
Luo
,
J.
,
Fahnestock
,
L. A.
,
Spencer
,
B. F.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Passive Damping Enhancement of a Two-Degree-of-Freedom System Through a Strongly Nonlinear Two-Degree-of-Freedom Attachment
,”
J. Sound Vib.
,
331
(
25
), pp.
5393
5407
. 10.1016/j.jsv.2012.06.023
21.
AL-Shudeifat
,
M. A.
,
Wierschem
,
N.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
, and
Spencer
,
B. F.
,
2013
, “
Numerical and Experimental Investigation of a Highly Effective Single-Sided Vibro-Impact Non-Linear Energy Sink for Shock Mitigation
,”
Int. J. NonLin. Mech.
,
52
, pp.
96
109
10.1016/j.ijnonlinmec.2013.02.004.
22.
Lee
,
Y. S.
,
Vakakis
,
A. F.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
,
Nucera
,
F.
,
Tsakirtzis
,
S.
, and
Panagopoulos
,
P. N.
,
2008
, “
Passive Non-Linear Targeted Energy Transfer and Its Applications to Vibration Absorption: A Review
,”
Proc. Inst. Mech. Eng. Part K
,
222
(
2
), pp.
77
134
. 10.1243/14644193JMBD118
23.
Nucera
,
F.
,
Vakakis
,
A. F.
,
McFarland
,
D. M.
,
Bergman
,
L. A.
, and
Kerschen
,
G.
,
2007
, “
Targeted Energy Transfers in Vibro-Impact Oscillators for Seismic Mitigation
,”
Nonlinear Dyn.
,
50
(
3
), pp.
651
677
. 10.1007/s11071-006-9189-7
24.
AL-Shudeifat
,
M. A.
,
2017
, “
Nonlinear Energy Sinks With Nontraditional Kinds of Nonlinear Restoring Forces
,”
ASME J. Vib. Acoust.
,
139
(
2
), p.
024503
. 10.1115/1.4035479
25.
Gourdon
,
E.
,
Alexander
,
N. A.
,
Taylor
,
C. A.
,
Lamarque
,
C. H.
, and
Pernot
,
S.
,
2007
, “
Nonlinear Energy Pumping Under Transient Forcing With Strongly Nonlinear Coupling: Theoretical and Experimental Results
,”
J. Sound Vib.
,
300
(
3–5
), pp.
522
551
. 10.1016/j.jsv.2006.06.074
26.
Viguié
,
R.
, and
Kerschen
,
G.
,
2010
, “
On the Functional Form of a Nonlinear Vibration Absorber
,”
J. Sound Vib.
,
329
(
25
), pp.
5225
5232
. 10.1016/j.jsv.2010.07.004
27.
Fang
,
Z.-W.
,
Zhang
,
Y.-W.
,
Li
,
X.
,
Ding
,
H.
, and
Chen
,
L.-Q.
,
2017
, “
Complexification-Averaging Analysis on a Giant Magnetostrictive Harvester Integrated With a Nonlinear Energy Sink
,”
ASME J. Vib. Acoust.
,
140
(
2
), p.
021009
. 10.1115/1.4038033
28.
Kong
,
X.
,
Li
,
H.
, and
Wu
,
C.
,
2018
, “
Dynamics of 1-Dof and 2-Dof Energy Sink With Geometrically Nonlinear Damping: Application to Vibration Suppression
,”
Nonlinear Dyn.
,
91
(
1
), pp.
733
754
. 10.1007/s11071-017-3906-2
29.
Gendelman
,
O. V.
, and
Alloni
,
A.
,
2016
, “
Forced System With Vibro-Impact Energy Sink: Chaotic Strongly Modulated Responses
,”
Procedia IUTAM
,
19
, pp.
53
64
. 10.1016/j.piutam.2016.03.009
30.
Gendelman
,
O. V.
, and
Alloni
,
A.
,
2015
, “
Dynamics of Forced System With Vibro-Impact Energy Sink
,”
J. Sound Vib.
,
358
(
8
), pp.
301
314
. 10.1016/j.jsv.2015.08.020
31.
Sigalov
,
G.
,
Gendelman
,
O. V.
,
AL-Shudeifat
,
M. A.
,
Manevitch
,
L. I.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Resonance Captures and Targeted Energy Transfers in an Inertially-Coupled Rotational Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
69
(
4
), pp.
1693
1704
. 10.1007/s11071-012-0379-1
32.
AL-Shudeifat
,
M. A.
,
Wierschem
,
N. E.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2017
, “
Numerical and Experimental Investigations of a Rotating Nonlinear Energy Sink
,”
Meccanica
,
52
(
4–5
), pp.
763
779
. 10.1007/s11012-016-0422-2
33.
Blanchard
,
A.
,
Bergman
,
L. A.
, and
Vakakis
,
A. F.
,
2017
, “
Targeted Energy Transfer in Laminar Vortex-Induced Vibration of a Sprung Cylinder With a Nonlinear Dissipative Rotator
,”
Phys. D
,
350
(
1
), pp.
26
44
. 10.1016/j.physd.2017.03.003
34.
Taghipour
,
J.
, and
Dardel
,
M.
,
2015
, “
Steady State Dynamics and Robustness of a Harmonically Excited Essentially Nonlinear Oscillator Coupled With a Two-DOF Nonlinear Energy Sink
,”
Mech. Syst. Signal Process.
,
62–63
, pp.
164
182
. 10.1016/j.ymssp.2015.03.018
35.
Sapsis
,
T. P.
,
Quinn
,
D. D.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2012
, “
Effective Stiffening and Damping Enhancement of Structures With Strongly Nonlinear Local Attachments
,”
ASME J. Vib. Acoust.
,
134
(
1
), p.
011016
. 10.1115/1.4005005
36.
Boroson
,
E.
,
Missoum
,
S.
,
Mattei
,
P.-O.
, and
Vergez
,
C.
,
2017
, “
Optimization Under Uncertainty of Parallel Nonlinear Energy Sinks
,”
J. Sound Vib.
,
394
(
28
), pp.
451
464
. 10.1016/j.jsv.2016.12.043
37.
Qiu
,
D.
,
Seguy
,
S.
, and
Paredes
,
M.
,
2018
, “
Tuned Nonlinear Energy Sink With Conical Spring: Design Theory and Sensitivity Analysis
,”
ASME J. Mech. Des.
,
140
(
1
), p.
011404
. 10.1115/1.4038304
38.
Wierschem
,
N. E.
,
Luo
,
J.
,
AL-Shudeifat
,
M.
,
Hubbard
,
S.
,
Ott
,
R.
,
Fahnestock
,
L. A.
,
Quinn
,
D. D.
,
McFarland
,
D. M.
,
Spencer
,
B. F.
,
Vakakis
,
A.
, and
Bergman
,
L. A.
,
2014
, “
Experimental Testing and Numerical Simulation of a Six-Story Structure Incorporating Two-Degree-of-Freedom Nonlinear Energy Sink
,”
J. Struct. Eng.
,
140
(
6
), p.
04014027
. 10.1061/(ASCE)ST.1943-541X.0000978
39.
Luo
,
J.
,
Wierschem
,
N. E.
,
Fahnestock
,
L. A.
,
Bergman
,
L. A.
,
Spencer
,
B. F.
,
AL-Shudeifat
,
M.
,
McFarland
,
D. M.
,
Quinn
,
D. D.
, and
Vakakis
,
A. F.
,
2014
, “
Realization of a Strongly Nonlinear Vibration-Mitigation Device Using Elastomeric Bumpers
,”
J. Eng. Mech.
,
140
(
5
), p.
04014009
. 10.1061/(ASCE)EM.1943-7889.0000692
40.
Karayannis
,
I.
,
Vakakis
,
A. F.
, and
Georgiades
,
F.
,
2008
, “
Vibro-Impact Attachments as Shock Absorbers
,”
Proc. Inst. Mech. Eng. Part C
,
222
(
10
), pp.
1899
1908
. 10.1243/09544062JMES864
41.
Li
,
T.
,
Seguy
,
S.
, and
Berlioz
,
A.
,
2016
, “
Dynamics of Cubic and Vibro-Impact Nonlinear Energy Sink: Analytical, Numerical, and Experimental Analysis
,”
ASME J. Vib. Acoust.
,
138
(
3
), p.
031010
. 10.1115/1.4032725
42.
Li
,
W.
,
Wierschem
,
N. E.
,
Li
,
X.
, and
Yang
,
T.
,
2018
, “
On the Energy Transfer Mechanism of the Single-Sided Vibro-Impact Nonlinear Energy Sink
,”
J. Sound Vib.
,
437
(
22
), pp.
166
179
. 10.1016/j.jsv.2018.08.057
43.
Vorotnikov
,
K.
, and
Starosvetsky
,
Y.
,
2015
, “
Nonlinear Energy Channeling in the Two-Dimensional, Locally Resonant, Unit-Cell Model. I. High Energy Pulsations and Routes to Energy Localization
,”
Chaos.
,
25
(
7
), p.
073106
. 10.1063/1.4922964
44.
Vorotnikov
,
K.
, and
Starosvetsky
,
Y.
,
2015
, “
Nonlinear Energy Channeling in the Two-Dimensional, Locally Resonant, Unit-Cell Model. II. Low Energy Excitations and Unidirectional Energy Transport
,”
Chaos.
,
25
(
7
), p.
073107
. 10.1063/1.4922965
45.
Vorotnikov
,
K.
,
2016
, “
Bifurcation Structure of the Special Class of Nonstationary Regimes Emerging in the 2D Inertially Coupled, Unit-Cell Model: Analytical Study
,”
J. Sound Vib.
,
377
(
1
), p.
17
. 10.1016/j.jsv.2016.05.001
46.
Vorotnikov
,
K.
,
Kovaleva
,
M.
, and
Starosvetsky
,
Y.
,
2018
, “
Emergence of Non-Stationary Regimes in One- and Two-Dimensional Models With Internal Rotators
,”
Philos. Trans. R. Soc. A
,
376
(
2127
), p.
20170134
. 10.1098/rsta.2017.0134
47.
Jayaprakash
,
K. R.
, and
Starosvetsky
,
Y.
,
2017
, “
Three-Dimensional Energy Channeling in the Unit-Cell Model Coupled to a Spherical Rotator I: Bidirectional Energy Channeling
,”
Nonlinear Dyn.
,
89
(
3
), pp.
2013
2040
. 10.1007/s11071-017-3568-0
48.
Jayaprakash
,
K. R.
, and
Starosvetsky
,
Y.
,
2017
, “
Three-Dimensional Energy Channeling in the Unit-Cell Model Coupled to a Spherical Rotator II: Unidirectional Energy Channeling
,”
Nonlinear Dyn.
,
89
(
4
), pp.
2311
2327
. 10.1007/s11071-017-3587-x
49.
Wang
,
J.
,
Wierschem
,
N. E.
,
Spencer
,
B. F.
, Jr.
, and
Lu
,
X.
,
2014
, “
Track Nonlinear Energy Sink for Rapid Response Reduction in Building Structures
,”
J. Eng. Mech.
,
141
(
1
), p.
04014104
. 10.1061/(ASCE)EM.1943-7889.0000824
50.
Wang
,
J.
,
Wierschem
,
N.
,
Spencer
,
B. F.
, and
Lu
,
X.
,
2015
, “
Experimental Study of Track Nonlinear Energy Sinks for Dynamic Response Reduction
,”
Eng. Struct.
,
94
(
1
), pp.
9
15
. 10.1016/j.engstruct.2015.03.007
51.
Wang
,
J.
,
Wierschem
,
N.
,
Spencer
,
B. F.
, and
Lu
,
X.
,
2016
, “
Numerical and Experimental Study of the Performance of a Single-Sided Vibro-Impact Track Nonlinear Energy Sink
,”
Earthq. Eng. Struct. Dyn.
,
45
(
4
), pp.
635
652
. 10.1002/eqe.2677
52.
Lu
,
X.
,
Liu
,
Z.
, and
Lu
,
Z.
,
2017
, “
Optimization Design and Experimental Verification of Track Nonlinear Energy Sink for Vibration Control Under Seismic Excitation
,”
Struct. Contr. Health Monit.
,
24
(
12
), p.
e2033
. 10.1002/stc.2033
53.
Pacific Earthquake Engineering Research Center (PEER)
,
2013
, “
PEER Ground Motion Database
,” https://ngawest2.berkeley.edu/spectras/224615/searches/new
You do not currently have access to this content.