Abstract

In this technical brief, the experimental study and model validations for the damping mechanisms of cable-harnessed beam structures are presented. The structure consists of cables wrapped around a host beam in a periodic zigzag pattern. A special case of cable attached along the beam length over its centerline is also considered. First, material damping in the cables is characterized using dynamic tests and the relevant cable damping factors are calculated for both the Kelvin–Voigt and hysteretic damping models. Experimental modal testing is then performed on the fabricated cable-harnessed beams to obtain the frequency response functions (FRFs). Finally, the experimental FRFs are compared with the damped analytical models. The test and model results are shown to be in very good agreements in predicting the structural damping induced by the cables.

References

1.
Babuska
,
V.
,
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2010
, “
Modeling and Experimental Validation of Space Structures With Wiring Harnesses
,”
J. Spacecraft Rockets
,
47
(
6
), pp.
1038
1052
. 10.2514/1.48078
2.
Spak
,
K. S.
,
Agnes
,
G. S.
, and
Inman
,
D. J.
,
2015
, “
Modeling Vibration Response and Damping of Cables and Cabled Structures
,”
J. Sound Vib.
,
336
, pp.
240
256
. 10.1016/j.jsv.2014.10.009
3.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Mass and Stiffness Effects of Harnessing Cables on Structural Dynamics: Continuum Modeling
,”
AIAA J.
,
54
(
9
), pp.
2881
2904
. 10.2514/1.J054156
4.
Coombs
,
D. M.
,
Goodding
,
J. C.
,
Babuška
,
V.
,
Ardelean
,
E. V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Dynamic Modeling and Experimental Validation of a Cable-Loaded Panel
,”
J. Spacecraft Rockets
,
48
(
6
), pp.
958
974
. 10.2514/1.51021
5.
Goodding
,
J. C.
,
Ardelean
,
E. V.
,
Babuska
,
V.
,
Robertson
,
L. M.
, and
Lane
,
S. A.
,
2011
, “
Experimental Techniques and Structural Parameter Estimation Studies of Spacecraft Cables
,”
J. Spacecraft Rockets
,
48
(
6
), pp.
942
957
. 10.2514/1.49346
6.
Spak
,
K.
,
Agnes
,
G.
, and
Inman
,
D.
,
2014
, “
Parameters for Modeling Stranded Cables as Structural Beams
,”
Experimental Mech.
,
54
(
9
), pp.
1613
1626
. 10.1007/s11340-014-9941-8
7.
Martin
,
B.
, and
Salehian
,
A.
,
2018
, “
Continuum Modeling of Nonperiodic String-Harnessed Structures: Perturbation Theory and Experiments
,”
AIAA J.
,
57
(
4
), pp.
1736
1751
. 10.2514/1.J056615
8.
Martin
,
B.
, and
Salehian
,
A.
,
2016
, “
Homogenization Modeling of Periodically Wrapped String-Harnessed Beam Structures: Experimental Validation
,”
AIAA J.
,
54
(
12
), pp.
3965
3980
. 10.2514/1.J055134
9.
Agrawal
,
P.
, and
Salehian
,
A.
,
2021
, “
Damping Mechanisms in Cable-Harnessed Structures for Space Applications: Analytical Modeling
,”
ASME J. Vib. Acoust.
,
143
(
2
), p.
021001
. 10.1115/1.4047881
10.
Menard
,
K. P.
,
2008
,
Dynamic Mechanical Analysis: A Practical Introduction
,
CRC Press
,
FL
.
11.
MTS Systems Corporation,
https://www.mts.com/cs/groups/public/documents/library/dev_002249.pdf, Accessed November 7, 2019.
12.
Ewins
,
D. J.
,
1984
,
Modal Testing: Theory and Practice
,
Wiley
,
NY
.
13.
Banks
,
H. T.
, and
Inman
,
D. J.
,
1991
, “
On Damping Mechanisms in Beams
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
716
723
. 10.1115/1.2897253
14.
Yerrapragada
,
K.
, and
Salehian
,
A.
,
2019
, “
Coupled Dynamics of Cable-Harnessed Structures: Experimental Validation
,”
ASME J. Vib. Acoust.
,
141
(
6
), p.
061001
. 10.1115/1.4043990
You do not currently have access to this content.