Abstract

Particle dampers that use soft/hard particles are attracting attention as a solution to problems such as oil leakage of oil dampers and the temperature dependence of their characteristics. Particle dampers effectively attenuate vibration using the friction and inelastic normal collisions generated between particles or between particles and walls. Here, the effects of the packing fraction of particles, the vibration frequency, and hardness of the material on the damper force characteristics of a separated dual-chamber single-rod type damper with elastomer particle assemblages were investigated experimentally. The maximal damper force and its hysteresis increased with the packing fraction, the vibration frequency, and the Young’s modulus of the particle material. Numerical simulations using the discrete element method (DEM) were performed to confirm the behavior of the elastomer particles when they were packed in both chambers. The compressive force distribution and velocity vector diagram of particles in the simulations showed that friction and compression between particles due to particle movement, friction between particles and the chamber walls, and the viscosity of the elastomer particles caused a large hysteresis in the damper force. The maximum damper force is affected by the viscoelastic component force and the friction force in the same proportion, and the hysteresis is dominated by the friction force. The simulation results were confirmed to be in good agreement, both qualitatively and quantitatively, with the experimentally measured damper force characteristics.

References

1.
Panossian
,
H. V.
,
1992
, “
Structural Damping Enhancement Via Non-Obstructive Particle Damping Technique
,”
ASME J. Vib. Acoust.
,
114
(
1
), pp.
101
105
. 10.1115/1.2930221
2.
Liu
,
W.
,
Tomlinson
,
G. R.
, and
Rongong
,
J. A.
,
2005
, “
The Dynamic Characterization of Disk Geometry Particle Dampers
,”
J. Sound Vib.
,
280
(
3–5
), pp.
849
861
. 10.1016/j.jsv.2003.12.047
3.
Dehghan-Niri
,
E.
,
Zahrai
,
S. M.
, and
Rod
,
A. F.
,
2012
, “
Numerical Studies of the Conventional Impact Damper With Discrete Frequency Optimization and Uncertainty Considerations
,”
Scientia Iranica Transaction A: Civil Engineering
,
19
(
2
), pp.
166
178
. 10.1016/j.scient.2012.01.001
4.
Zahrai
,
S. M.
, and
Rod
,
A. F.
,
2015
, “
Shake Table Tests of Using Single-Particle Impact Damper to Reduce Seismic Response
,”
Asian J. Civil Eng.
,
16
(
3
), pp.
471
487
.
5.
Lu
,
Z.
,
Masri
,
S. F.
, and
Lu
,
X.
,
2011
, “
Studies of the Performance of Particle Dampers Attached to a Two-Degrees-of-Freedom System Under Random Excitation
,”
J. Vib. Control
,
17
(
10
), pp.
1454
1471
. 10.1177/1077546310370687
6.
Zahrai
,
S. M.
, and
Rod
,
A. F.
,
2009
, “
Effect of Impact Damper on SDOF System Vibrations Under Harmonic and Impulsive Excitations
,”
Journal of Physics: Conference Series
,
Murray Edwards College, Cambridge, UK
, Vol.
181
,
Sept. 8–10, 2009
, p.
012066
.
7.
Takahashi
,
Y.
, and
Sekine
,
M.
,
2015
, “
Examination of Particle Behavior in Container on Multi-Particle Collision Damper
,”
Machines
,
3
(
3
), pp.
242
255
. 10.3390/machines3030242
8.
Saeki
,
M.
,
2009
, “
Energy Dissipation Model of Particle Dampers
,”
50th AIAA/ASME/ASCE/ASC Structures, Structural Dynamics, and Materials Conference
,
Palm Springs, California
,
AIAA
,
May 4–7, 2009
, pp.
2009
2692
.
9.
Inoue
,
M.
,
Yokomichi
,
I.
, and
Hiraki
,
K.
,
2011
, “
Particle Damping With Granular Materials for Multi Degree of Freedom System
,”
Shock Vib.
,
18
(
1–2
), pp.
245
256
. 10.1155/2011/309682
10.
Sanchez
,
M.
,
Rosenthal
,
G.
, and
Pugnaloni
,
L. A.
,
2012
, “
Universal Response of Optimal Granular Damping Devices
,”
J. Sound Vib.
,
331
(
20
), pp.
4389
4394
. 10.1016/j.jsv.2012.05.001
11.
Lu
,
Z.
,
Lu
,
X.
,
Lu
,
W.
, and
Masri
,
S. F.
,
2012
, “
Shaking Table Test of the Effects of Multi-Unit Particle Dampers Attached to an MDOF System Under Earthquake Excitation
,”
Earthquake Eng. Struct. Dynamics
,
41
(
5
), pp.
987
1000
. 10.1002/eqe.1170
12.
Du
,
Y.
,
Wang
,
S.
,
Zhu
,
Y.
,
Li
,
L.
, and
Han
,
G.
,
2008
, “
Performance of a New Fine Particle Impact Damper
,”
Adv. Acoust. Vib.
Article ID 140894.
13.
Ido
,
Y.
, and
Hayashi
,
K.
,
2012
, “
Damping Force of Damper Utilizing a Spherical Particle Assemblage
,”
Proceedings of 15th International Conference on Experimental Mechanics
,
Portugal
,
Paper Ref.: 2714, July 22–27, 2012
.
14.
Hayashi
,
K.
,
Kawai
,
T.
,
Ido
,
Y.
, and
Kiuchi
,
Y.
,
2012
, “
Damping Force of a Particles Damper in the Presence of Magnetic Field
,”
J. Japan Soc. Appl. Electromagn. Mech.
,
20
(
1
), pp.
274
279
(in Japanese).
15.
Ido
,
Y.
,
Hanai
,
M.
,
Kawai
,
T.
,
Hayashi
,
K.
, and
Toyouchi
,
A.
,
2016
, “
Effects of Container Size, Stroke and Frequency on Damping Properties of a Damper Using a Steel Particle Assemblage
,”
Adv. Exp. Mech.
,
1
, pp.
105
110
.
16.
Hanai
,
M.
,
Ido
,
Y.
,
Iwamoto
,
Y.
,
Nishizawa
,
T.
, and
Hayashi
,
K.
,
2016
, “
Discrete Element Method Simulation of Dynamic Behavior of Particles in a Damper Using a Steel Particle Assemblage
,”
Asian Conference on Experimental Mechanics 2016 Abstract PDF Files
,
Jeju City, South Korea
,
Nov. 13–16, 2016
, pp.
352
353
, No. 160310.
17.
Morishita
,
Y.
,
Ido
,
Y.
,
Maekawa
,
K.
, and
Toyouchi
,
A.
,
2016
, “
Basic Damping Property of a Double Rod Type Damper Utilizing an Elastomer Particle Assemblage
,”
Adv. Exp. Mech.
,
1
, pp.
93
98
.
18.
Kawamoto
,
R.
,
Ido
,
Y.
, and
Toyouchi
,
A.
,
2016
, “
Damping Properties of a Damper Using an Elastomer Particle Assemblage Containing Fine Particles
,”
Adv. Exp. Mech.
,
1
, pp.
99
104
.
19.
Toyouchi
,
A.
,
Ido
,
Y.
,
Iwamoto
,
Y.
, and
Hanai
,
M.
,
2020
, “
Damper Force Characteristics of a Separated Dual-Chamber Single-Rod Type Damper Utilizing an Elastomer Particle Assemblage
,”
J. Sound Vib.
,
488
.
20.
Cundall
,
P. A.
, and
Strack
,
O. D. L.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Géotechnique
,
29
(
1
), pp.
47
65
. 10.1680/geot.1979.29.1.47
21.
Mindlin
,
R. D.
, “
Compliance of Elastic Bodies in Contact
,”
Trans. ASME, Series E, J. Appl. Mech.
,
16
(
1949
), pp.
259
268
.
22.
The Japan Society of Mechanical Engineers
,
1977
,
JSME Mechanical Engineers' Handbook
, Vol.
6
,
Maruzen Publishing Co., Ltd
, pp.
3
34
.
23.
The Society of Rubber Science and Technology
,
2001
,
Journal of The Society of Rubber Industry
, Vol.
74
,
The Society of Rubber Science and Technology, Japan
, pp.
212
217
.
You do not currently have access to this content.