Abstract

We show that shear waves traveling toward the surface of a half-space medium can be attenuated via buried one-dimensional arrays of resonators—here called metapiles—arranged according to sparse patterns around a site to be isolated. Our focus is on shear waves approaching the surface along a direction perpendicular to the surface itself. First, we illustrate the behavior of metapiles, both experimentally and numerically, using 3D printed resonators embedded in an acrylic plate. Then, via numerical simulations, we extend this idea to the case study of an idealized half-space and elucidate the influence of various design parameters on wave attenuation. Results of this work demonstrate that significant wave attenuation can be achieved by installing sparse resonating piles around a selected site on the free surface of the medium, rather than placing resonators directly underneath that same site. This work might have implications in metamaterial-based wave attenuation applications across scales.

References

1.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y. Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
2.
Huang
,
H. H.
,
Sun
,
C. T.
, and
Huang
,
G. L.
,
2009
, “
On the Negative Effective Mass Density in Acoustic Metamaterials
,”
Int. J. Eng. Sci.
,
47
(
4
), pp.
610
617
.
3.
Hussein
,
M. I.
,
Leamy
,
M. J.
, and
Ruzzene
,
M.
,
2014
, “
Dynamics of Phononic Materials and Structures: Historical Origins, Recent Progress, and Future Outlook
,”
Appl. Mech. Rev.
,
66
(
4
), p.
040802
.
4.
Oudich
,
M.
,
Senesi
,
M.
,
Assouar
,
M. B.
,
Ruzzene
,
M.
,
Sun
,
J.-H.
,
Vincent
,
B.
,
Hou
,
Z.
, and
Wu
,
T.-T.
,
2011
, “
Experimental Evidence of Locally Resonant Sonic Band Gap in Two-Dimensional Phononic Stubbed Plates
,”
Phys. Rev. B
,
84
(
16
), p.
165136
.
5.
Rupin
,
M.
,
Lemoult
,
F.
,
Lerosey
,
G.
, and
Roux
,
P.
,
2014
, “
Experimental Demonstration of Ordered and Disordered Multiresonant Metamaterials for Lamb Waves
,”
Phys. Rev. Lett.
,
112
(
23
), p.
234301
.
6.
Celli
,
P.
, and
Gonella
,
S.
,
2015
, “
Manipulating Waves With LEGO Bricks: A Versatile Experimental Platform for Metamaterial Architectures
,”
Appl. Phys. Lett.
,
107
(
8
), p.
081901
.
7.
Bergamini
,
A.
,
Delpero
,
T.
,
De Simoni
,
L.
,
Di Lillo
,
L.
,
Ruzzene
,
M.
, and
Ermanni
,
P.
,
2014
, “
Phononic Crystal With Adaptive Connectivity
,”
Adv. Mater.
,
26
(
9
), pp.
1343
1347
.
8.
Attarzadeh
,
M. A.
,
Callanan
,
J.
, and
Nouh
,
M.
,
2020
, “
Experimental Observation of Nonreciprocal Waves in a Resonant Metamaterial Beam
,”
Phys. Rev. Appl.
,
13
(
2
), p.
021001
.
9.
Bilal
,
O. R.
,
Ballagi
,
D.
, and
Daraio
,
C.
,
2018
, “
Architected Lattices for Simultaneous Broadband Attenuation of Airborne Sound and Mechanical Vibrations in All Directions
,”
Phys. Rev. Appl.
,
10
(
5
), p.
054060
.
10.
Garova
,
E. A.
,
Maradudin
,
A. A.
, and
Mayer
,
A. P.
,
1999
, “
Interaction of Rayleigh Waves With Randomly Distributed Oscillators on the Surface
,”
Phys. Rev. B
,
59
(
20
), pp.
13291
13296
.
11.
Schwan
,
L.
, and
Boutin
,
C.
,
2013
, “
Unconventional Wave Reflection Due to ‘Resonant Surface’
,”
Wave Motion
,
50
(
4
), pp.
852
868
.
12.
Palermo
,
A.
,
Krödel
,
S.
,
Marzani
,
A.
, and
Daraio
,
C.
,
2016
, “
Engineered Metabarrier as Shield From Seismic Surface Waves
,”
Sci. Rep.
,
6
, p.
39356
.
13.
Colombi
,
A.
,
Roux
,
P.
,
Guenneau
,
S.
,
Gueguen
,
P.
, and
Craster
,
R. V.
,
2016
, “
Forests as Natural Seismic Metamaterials: Rayleigh Wave Bandgaps Induced by Local Resonances
,”
Sci. Rep.
,
6
, p.
19238
.
14.
Colombi
,
A.
,
Colquitt
,
D. J.
,
Roux
,
P.
,
Guenneau
,
S.
, and
Craster
,
R. V.
,
2016
, “
A Seismic Metamaterial: The Resonant Metawedge
,”
Sci. Rep.
,
6
(
1
), pp.
1
6
.
15.
Miniaci
,
M.
,
Krushynska
,
A.
,
Bosia
,
F.
, and
Pugno
,
N. M.
,
2016
, “
Large Scale Mechanical Metamaterials as Seismic Shields
,”
New J. Phys.
,
18
(
8
), p.
083041
.
16.
Colquitt
,
D. J.
,
Colombi
,
A.
,
Craster
,
R. V.
,
Roux
,
P.
, and
Guenneau
,
S. R. L.
,
2017
, “
Seismic Metasurfaces: Sub-wavelength Resonators and Rayleigh Wave Interaction
,”
J. Mech. Phys. Solids
,
99
, pp.
379
393
.
17.
Muhammad
,
Lim
,
C. W.
, and
Reddy
,
J. N.
,
2019
, “
Built-Up Structural Steel Sections as Seismic Metamaterials for Surface Wave Attenuation With Low Frequency Wide Bandgap in Layered Soil Medium
,”
Eng. Struct.
,
188
, pp.
440
451
.
18.
Palermo
,
A.
,
Wang
,
Y.
,
Celli
,
P.
, and
Daraio
,
C.
,
2019
, “
Tuning of Surface-Acoustic-WAVE Dispersion Via Magnetically Modulated Contact Resonances
,”
Phys. Rev. Appl.
,
11
(
4
), p.
044057
.
19.
Achaoui
,
Y.
,
Ungureanu
,
B.
,
Enoch
,
S.
,
Brûlé
,
S.
, and
Guenneau
,
S.
,
2016
, “
Seismic Waves Damping With Arrays of Inertial Resonators
,”
Extreme Mech. Lett.
,
8
, pp.
30
37
.
20.
Mitchell
,
S. J.
,
Pandolfi
,
A.
, and
Ortiz
,
M.
,
2014
, “
Metaconcrete: Designed Aggregates to Enhance Dynamic Performance
,”
J. Mech. Phys. Solids
,
65
, pp.
69
81
.
21.
La Salandra
,
V.
,
Wenzel
,
M.
,
Bursi
,
O. S.
,
Carta
,
G.
, and
Movchan
,
A. B.
,
2017
, “
Conception of a 3d Metamaterial-Based Foundation for Static and Seismic Protection of Fuel Storage Tanks
,”
Front. Mater.
,
4
, p.
30
.
22.
Casablanca
,
O.
,
Ventura
,
G.
,
Garescì
,
F.
,
Azzerboni
,
B.
,
Chiaia
,
B.
,
Chiappini
,
M.
, and
Finocchio
,
G.
,
2018
, “
Seismic Isolation of Buildings Using Composite Foundations Based on Metamaterials
,”
J. Appl. Phys.
,
123
(
17
), p.
174903
.
23.
Basone
,
F.
,
Wenzel
,
M.
,
Bursi
,
O. S.
, and
Fossetti
,
M.
,
2019
, “
Finite Locally Resonant Metafoundations for the Seismic Protection of Fuel Storage Tanks
,”
Earthq. Eng. Struct. Dyn.
,
48
(
2
), pp.
232
252
.
24.
Colombi
,
A.
,
Zaccherini
,
R.
,
Aguzzi
,
G.
,
Palermo
,
A.
, and
Chatzi
,
E.
,
2020
, “
Mitigation of Seismic Waves: Metabarriers and Metafoundations Bench Tested
,”
J. Sound Vib.
,
485
, p.
115537
.
25.
Finocchio
,
G.
,
Casablanca
,
O.
,
Ricciardi
,
G.
,
Alibrandi
,
U.
,
Garescì
,
F.
,
Chiappini
,
M.
, and
Azzerboni
,
B.
,
2014
, “
Seismic Metamaterials Based on Isochronous Mechanical Oscillators
,”
Appl. Phys. Lett.
,
104
(
19
), p.
191903
.
26.
Sun
,
F.
,
Xiao
,
L.
, and
Bursi
,
O. S.
,
2020
, “
Quantification of Seismic Mitigation Performance of Periodic Foundations With Soil–Structure Interaction
,”
Soil Dyn. Earthq. Eng.
,
132
, p.
106089
.
27.
Khelif
,
A.
,
Choujaa
,
A.
,
Benchabane
,
S.
,
Djafari-Rouhani
,
B.
, and
Laude
,
V.
,
2004
, “
Guiding and Bending of Acoustic Waves in Highly Confined Phononic Crystal Waveguides
,”
Appl. Phys. Lett.
,
84
(
22
), pp.
4400
4402
.
28.
Oudich
,
M.
,
Assouar
,
M. B.
, and
Hou
,
Z.
,
2010
, “
Propagation of Acoustic Waves and Waveguiding in a Two-Dimensional Locally Resonant Phononic Crystal Plate
,”
Appl. Phys. Lett.
,
97
(
19
), p.
193503
.
29.
Bonanomi
,
L.
,
Theocharis
,
G.
, and
Daraio
,
C.
,
2015
, “
Wave Propagation in Granular Chains With Local Resonances
,”
Phys. Rev. E
,
91
(
3
), p.
033208
.
30.
Matlack
,
K. H.
,
Bauhofer
,
A.
,
Krödel
,
S.
,
Palermo
,
A.
, and
Daraio
,
C.
,
2016
, “
Composite 3D-Printed Metastructures for Low-Frequency and Broadband Vibration Absorption
,”
Proc. Natl. Acad. Sci. U.S.A.
,
113
(
30
), pp.
8386
8390
.
31.
Barnhart
,
M. V.
,
Xu
,
X.
,
Chen
,
Y.
,
Zhang
,
S.
,
Song
,
J.
, and
Huang
,
G.
,
2019
, “
Experimental Demonstration of a Dissipative Multi-resonator Metamaterial for Broadband Elastic Wave Attenuation
,”
J. Sound Vib.
,
438
, pp.
1
12
.
32.
Pajunen
,
K.
,
Johanns
,
P.
,
Pal
,
R. K.
,
Rimoli
,
J. J.
, and
Daraio
,
C.
,
2019
, “
Design and Impact Response of 3D-Printable Tensegrity-Inspired Structures
,”
Mater. Des.
,
182
, p.
107966
.
33.
Lysmer
,
J.
, and
Kuhlemeyer
,
R. L.
,
1969
, “
Finite Dynamic Model for Infinite Media
,”
J. Eng. Mech. Div.
,
95
(
4
), pp.
859
878
.
34.
Wang
,
J.
,
Sun
,
W.
, and
Anand
,
S.
,
2009
, “
Numerical Investigation on Active Isolation of Ground Shock by Soft Porous Layers
,”
J. Sound Vib.
,
321
(
3–5
), pp.
492
509
.
35.
Vermeer
,
P. A.
, and
Brinkgreve
,
R. B. J.
,
1998
,
Plaxis Finite Element Code for Soil and Rock Analyses
,
Balkema
,
Rotterdam-Brookfield
, p.
1
114
.
36.
Amorosi
,
A.
, and
Boldini
,
D.
,
2009
, “
Numerical Modelling of the Transverse Dynamic Behaviour of Circular Tunnels in Clayey Soils
,”
Soil Dyn. Earthq. Eng.
,
29
(
6
), pp.
1059
1072
.
37.
Kramer
,
S. L.
,
1996
,
Geotechnical Earthquake Engineering
,
Pearson Education India
.
38.
Xiao
,
L.
,
Sun
,
F.
, and
Bursi
,
O. S.
,
2020
, “
Vibration Attenuation and Amplification of One-Dimensional Uncoupled and Coupled Systems With Optimal Metafoundations
,”
J. Eng. Mech.
,
146
(
7
), p.
04020058
.
39.
Palermo
,
A.
,
Krödel
,
S.
,
Matlack
,
K. H.
,
Zaccherini
,
R.
,
Dertimanis
,
V. K.
,
Chatzi
,
E. N.
,
Marzani
,
A.
, and
Daraio
,
C.
,
2018
, “
Hybridization of Guided Surface Acoustic Modes in Unconsolidated Granular Media by a Resonant Metasurface
,”
Phys. Rev. Appl.
,
9
(
5
), p.
054026
.
40.
Zaccherini
,
R.
,
Colombi
,
A.
,
Palermo
,
A.
,
Dertimanis
,
V. K.
,
Marzani
,
A.
,
Thomsen
,
H. R.
,
Stojadinovic
,
B.
, and
Chatzi
,
E. N.
,
2020
, “
Locally Resonant Metasurfaces for Shear Waves in Granular Media
,”
Phys. Rev. Appl.
,
13
(
3
), p.
034055
.
You do not currently have access to this content.