Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Vibrations due to tire–road contact in wheeled vehicles induce acoustic discomfort especially beyond 35 km/h. This paper proposes an active control method to reduce the vibration transmission from the tire–road contact to the vehicle through piezoelectric transducers located directly on the wheel spokes. Our approach relies on a double spatial modal filter to physically focus the control energy on the wheel pumping mode while avoiding any spillover phenomena. In addition, a bandpass controller ensures maximum damping on the targeted mode. The proposed control strategy is applied first to the clamped wheel in order to validate the static performance of the spatial controller. Then the wheel is excited through the tire and the efficiency of the controller is evaluated through the measured force passing by the wheel hub. Finally, the tire–wheel assembly (TWA) is placed on an experimental setup recreating the vehicle operating conditions with wheel rotation at different velocities and road excitations. The experimental results confirm the efficiency of the proposed control method and its robustness to the dynamics evolution of the structure in function of the TWA angular velocity.

References

1.
Braun
,
M. E.
,
Walsh
,
S. J.
,
Horner
,
J. L.
, and
Chuter
,
R.
,
2013
, “
Noise Source Characteristics in the ISO 362 Vehicle Pass-by Noise Test: Literature Review
,”
Appl. Acoust.
,
74
(
11
), pp.
1241
1265
.
2.
Sakata
,
T.
,
Morimura
,
H.
, and
Ide
,
H.
,
1990
, “
Effects of Tire Cavity Resonance on Vehicle Road Noise
,”
Tire Sci. Technol.
,
18
(
2
), pp.
68
79
.
3.
Zhang
,
Y.-B.
,
Yao
,
Q.
,
Xiao
,
L.
,
Zhang
,
X.-Z.
,
Zheng
,
C.-J.
, and
Bi
,
C.-X.
,
2019
, “
On the Resonance of a Lined Tire Cavity
,”
Acta Acust. Acust.
,
105
(
6
), pp.
1237
1242
.
4.
Waisanen
,
A. S.
, and
Blough
,
J. R.
,
2009
, “
Road Noise TPA Simplification for Improving Vehicle Sensitivity to Tire Cavity Resonance Using Helium Gas
,”
SAE 2009 Noise and Vibration Conference and Exhibition
,
St. Charles, IL
,
May 18–21
.
5.
Scavuzzo
,
R. W.
,
Charek
,
L. T.
,
Sandy
,
P. M.
, and
Shteinhauz
,
G. D.
,
1994
, “
Influence of Wheel Resonance on Tire Acoustic Cavity Noise
,”
J. Passenger Cars
,
103
(
6
), pp.
643
648
.
6.
Tamboli
,
J. A.
, and
Joshi
,
S. G.
,
1999
, “
Optimum Design of a Passive Suspension System of a Vehicle Subjected to Actual Random Road Excitations
,”
ASME J. Vib. Acoust.
,
219
(
2
), pp.
193
205
.
7.
Esmailzadeh
,
E.
, and
Taghirad
,
H. D.
,
1998
, “
Active Vehicle Suspensions With Optimal State-Feedback Control
,”
Int. J. Model. Simul.
,
18
(
3
), pp.
228
238
.
8.
Hac
,
A.
, and
Youn
,
I.
,
1993
, “
Optimal Design of Active and Semi-Active Suspensions Including Time Delays and Preview
,”
ASME J. Vib. Acoust.
,
115
(
4
), pp.
498
508
.
9.
Jia
,
T.
,
Pan
,
Y.
,
Liang
,
H.
, and
Lam
,
H.-K.
,
2022
, “
Event-Based Adaptive Fixed-Time Fuzzy Control for Active Vehicle Suspension Systems With Time-Varying Displacement Constraint
,”
IEEE Trans. Fuzzy Syst.
,
30
(
8
), pp.
2813
2821
.
10.
Theunissen
,
J.
,
Tota
,
A.
,
Gruber
,
P.
,
Dhaens
,
M.
, and
Sorniotti
,
A.
,
2021
, “
Preview-Based Techniques for Vehicle Suspension Control: A State-of-the-Art Review
,”
Annu. Rev. Control
,
51
(
1
), pp.
206
235
.
11.
Rodriguez
,
J.
,
Collet
,
M.
, and
Chesné
,
S.
,
2022
, “
Active Vibration Control on a Smart Composite Structure Using Modal-Shaped Sliding Mode Control
,”
ASME J. Vib. Acoust.
,
144
(
2
), p.
021013
.
12.
Meirovitch
,
L.
, and
Baruh
,
H.
,
1985
, “
The Implementation of Modal Filters for Control of Structures
,”
J. Guid. Control Dyn.
,
8
(
6
), pp.
707
716
.
13.
Preumont
,
A.
,
François
,
A.
,
De Man
,
P.
, and
Piefort
,
V.
,
2003
, “
Spatial Filters in Structural Control
,”
ASME J. Vib. Acoust.
,
265
(
1
), pp.
61
79
.
14.
Baruh
,
H.
, and
Silverberg
,
L. M.
,
1986
, “
Identification of External Excitations in Self-Adjoint Distributed Systems Using Modal Filters
,”
ASME J. Vib. Acoust.
,
108
(
2
), pp.
247
260
.
15.
Lee
,
C.-K.
, and
Moon
,
F. C.
,
1990
, “
Modal Sensors/Actuators
,”
ASME J. Appl. Mech.
,
57
(
2
), pp.
434
441
.
16.
Xue
,
K.
,
Igarashi
,
A.
, and
Kachi
,
T.
,
2018
, “
Optimal Sensor Placement for Active Control of Floor Vibration Considering Spillover Effect Associated With Modal Filtering
,”
Eng. Struct.
,
165
(
1
), pp.
198
209
.
17.
Daraji
,
A. H.
,
Hale
,
J. M.
, and
Ye
,
J.
,
2017
, “
New Methodology for Optimal Placement of Piezoelectric Sensor/Actuator Pairs for Active Vibration Control of Flexible Structures
,”
ASME J. Vib. Acoust.
,
140
(
1
), p.
011015
.
18.
Heck
,
L. P.
,
Olkin
,
J. A.
, and
Naghshineh
,
K.
,
1998
, “
Transducer Placement for Broadband Active Vibration Control Using a Novel Multidimensional QR Factorization
,”
ASME J. Vib. Acoust.
,
120
(
3
), pp.
663
670
.
19.
Jia
,
S.
, and
Shan
,
J.
,
2018
, “
Optimal Actuator Placement for Constrained Gyroelastic Beam Considering Control Spillover
,”
J. Guid. Control Dyn.
,
41
(
9
), pp.
2073
2081
.
20.
Chesne
,
S.
, and
Pezerat
,
C.
,
2015
, “
Force Identification by Using Specific Forms of PVDF Patches
,”
Smart Struct. Syst.
,
15
(
5
), pp.
1203
1214
.
21.
Snyder
,
S. D.
,
Tanaka
,
N.
, and
Kikushima
,
Y.
,
1995
, “
The Use of Optimally Shaped Piezo-Electric Film Sensors in the Active Control of Free Field Structural Radiation, Part 1: Feedforward Control
,”
ASME J. Vib. Acoust.
,
117
(
3A
), pp.
311
322
.
22.
Snyder
,
S. D.
,
Tanaka
,
N.
, and
Kikushima
,
Y.
,
1996
, “
The Use of Optimally Shaped Piezo-Electric Film Sensors in the Active Control of Free Field Structural Radiation, Part 2: Feedback Control
,”
ASME J. Vib. Acoust.
,
118
(
1
), pp.
112
121
.
23.
Hagood
,
N. W.
, and
Von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
ASME J. Vib. Acoust.
,
146
(
2
), pp.
243
268
.
24.
Kwak
,
S.-K.
,
Washington
,
G.
, and
Yedavalli
,
R. K.
,
2021
, “
Active and Passive Vibration Control of Landing Gear Components
,”
ASME International Mechanical Engineering Congress and Exposition
,
Online
,
Nov. 1–4
, pp.
269
275
.
25.
Hurlebaus
,
S.
,
Stöbener
,
U.
, and
Gaul
,
L.
,
2008
, “
Vibration Reduction of Curved Panels by Active Modal Control
,”
Comput. Struct.
,
86
(
3–5
), pp.
251
257
.
26.
Sharma
,
S.
,
Kumar
,
A.
,
Kumar
,
R.
,
Talha
,
M.
, and
Vaish
,
R.
,
2020
, “
Active Vibration Control of Smart Structure Using Poling Tuned Piezoelectric Material
,”
J. Intell. Mater. Syst. Struct.
,
31
(
10
), pp.
1298
1313
.
27.
Richardson
,
M. H.
, and
Formenti
,
D. L.
,
1982
, “
Parameter Estimation From Frequency Response Measurements Using Rational Fraction Polynomials
,”
International Modal Analysis Conference
,
Orland, FL
,
Nov. 8–10
, Vol. 1, pp.
167
186
.
28.
Richardson
,
M. H.
, and
Formenti
,
D. L.
,
1985
, “
Global Curve Fitting of Frequency Response Measurements Using the Rational Fraction Polynomial Method
,”
Proceeding of 3rd IMAC
,
Orlando, FL
,
Jan. 28–31
, pp.
390
397
.
You do not currently have access to this content.