Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Broadband acoustic absorber via a structure with sub-wavelength thickness is of great and continuing interest in research and engineering communities. To broaden the absorption band of acoustic absorbers, common methods often involve using septum to create a double-layer structure or replacing cavity walls with flexible materials. However, such approaches require strict restrictions of thickness and structure design for the absorbers. This work presents a metamaterial design method that uses an external frame to construct double resonant metamaterials, effectively improving broadband sound absorption performance. Specifically, this method can be decoupled from the design of original cavity-type absorber structure and external frame. The absorption performance is significantly improved by adding an external frame to wrap around a cavity-type acoustic absorber structure with air. Furthermore, utilizing the coaction of cascade coupling and external frame, the average absorption ratio of the metamaterial in high-frequency domain (above 2000 Hz) can be improved by six times. Since this structural design broadens the absorption band without changing structural parameters of the original absorber, it has potentials to be applied in various engineering fields.

References

1.
Baudin
,
C.
,
Lefèvre
,
M.
,
Babisch
,
W.
,
Cadum
,
E.
,
Champelovier
,
P.
,
Dimakopoulou
,
K.
,
Houthuijs
,
D.
, et al
,
2020
, “
The Role of Aircraft Noise Annoyance and Noise Sensitivity in the Association Between Aircraft Noise Levels and Hypertension Risk: Results of a Pooled Analysis From Seven European Countries
,”
Environ. Res.
,
191
, p.
110179
.
2.
Gjestland
,
T.
,
2018
, “
A Systematic Review of the Basis for WHO’s New Recommendation for Limiting Aircraft Noise Annoyance
,”
Int. J. Environ. Res. Public Health
,
15
(
12
), p.
2717
.
3.
Brink
,
M.
,
Schäffer
,
B.
,
Vienneau
,
D.
,
Foraster
,
M.
,
Pieren
,
R.
,
Eze
,
I. C.
,
Cajochen
,
C.
,
Probst-Hensch
,
N.
,
Röösli
,
M.
, and
Wunderli
,
J. M.
,
2019
, “
A Survey on Exposure-Response Relationships for Road, Rail, and Aircraft Noise Annoyance: Differences Between Continuous and Intermittent Noise
,”
Environ. Int.
,
125
, pp.
277
290
.
4.
de Bedout
,
J. M.
,
Franchek
,
M. A.
,
Bernhard
,
R. J.
, and
Mongeau
,
L.
,
1997
, “
Adaptive-Passive Noise Control With Self-Tunning Helmholtz Resonators
,”
J. Sound Vib.
,
202
(
1
), pp.
109
123
.
5.
Estève
,
S.
, and
Johnson
,
M. E.
,
2005
, “
Adaptive Helmholtz Resonators and Passive Vibration Absorbers for Cylinder Interior Noise Control
,”
J. Sound Vib.
,
288
(
4–5
), pp.
1105
1130
.
6.
Lu
,
Z.
,
Cui
,
Y.
,
Zhu
,
J.
,
Zhao
,
Z.
, and
Debiasi
,
M.
,
2013
, “
Acoustic Characteristics of a Dielectric Elastomer Absorber
,”
J. Acoust. Soc. Am.
,
134
(
5
), pp.
4218
4218
.
7.
Wang
,
Y.
,
Zhang
,
S.
,
Guo
,
H.
,
Wang
,
X.
,
Yang
,
C.
, and
Liu
,
N. J.
,
2021
, “
Hybrid Time–Frequency Algorithm for Active Sound Quality Control of Vehicle Interior Noise Based on Stationary Discrete Wavelet Transform
,”
Appl. Acoust.
,
171
, p.
107561
.
8.
Fan
,
J.
,
Song
,
B.
,
Zhang
,
L.
,
Wang
,
X.
,
Zhang
,
Z.
,
Wei
,
S.
,
Xiang
,
X.
,
Zhu
,
X.
, and
Shi
,
Y.
,
2023
, “
Structural Design and Additive Manufacturing of Multifunctional Metamaterials With Low-Frequency Sound Absorption and Load-Bearing Performances
,”
Int. J. Mech. Sci.
,
238
, p.
107848
.
9.
Roca
,
D.
,
Cante
,
J.
,
Lloberas-Valls
,
O.
,
Pàmies
,
T.
, and
Oliver
,
J.
,
2021
, “
Multiresonant Layered Acoustic Metamaterial (MLAM) Solution for Broadband Low-Frequency Noise Attenuation Through Double-Peak Sound Transmission Loss Response
,”
Extreme Mech. Lett.
,
47
, p.
101368
.
10.
Yang
,
M.
, and
Sheng
,
P.
,
2017
, “
Sound Absorption Structures: From Porous Media to Acoustic Metamaterials
,”
Annu. Rev. Mater. Res.
,
47
(
1
), pp.
83
114
.
11.
Ding
,
H.
,
Wang
,
N.
,
Qiu
,
S.
,
Huang
,
S.
,
Zhou
,
Z.
,
Zhou
,
C.
,
Jia
,
B.
, and
Li
,
Y.
,
2022
, “
Broadband Acoustic Meta-Liner With Metal Foam Approaching Causality-Governed Minimal Thickness
,”
Int. J. Mech. Sci.
,
232
, p.
107601
.
12.
Ma
,
P.
,
Wang
,
H.
,
Li
,
D.
,
Yuan
,
S.
, and
Fan
,
X.
,
2024
, “
Passive Acoustic Liners for Aero-Engine Noise Control: A Review
,”
Mech. Adv. Mater. Struct.
, pp.
1
16
.
13.
Berardi
,
U.
, and
Iannace
,
G.
,
2015
, “
Acoustic Characterization of Natural Fibers for Sound Absorption Applications
,”
Build. Environ.
,
94
(
2
), pp.
840
852
.
14.
Cao
,
L.
,
Fu
,
Q.
,
Si
,
Y.
,
Ding
,
B.
, and
Yu
,
J.
,
2018
, “
Porous Materials for Sound Absorption
,”
Compos. Commun.
,
10
, pp.
25
35
.
15.
Daa You
,
M.
,
2000
, “
Theory of Microslit Absorbers
,”
Acta Acust. Acust.
,
25
(
6
), pp.
481
485
.
16.
Maa
,
D. Y.
,
1998
, “
Potential of Microperforated Panel Absorber
,”
J. Acoust. Soc. Am.
,
104
(
5
), pp.
2861
2866
.
17.
Ma
,
F.
,
Wang
,
C.
,
Du
,
Y.
,
Zhu
,
Z.
, and
Wu
,
J. H.
,
2022
, “
Enhancing of Broadband Sound Absorption Through Soft Matter
,”
Mater. Horiz.
,
9
(
2
), pp.
653
662
.
18.
Cummer
,
S. A.
,
Christensen
,
J.
, and
Alù
,
A.
,
2016
, “
Controlling Sound With Acoustic Metamaterials
,”
Nat. Rev. Mater.
,
1
(
3
), pp.
1
13
.
19.
Tao
,
Y.
,
Ren
,
M.
,
Zhang
,
H.
, and
Peijs
,
T.
,
2021
, “
Recent Progress in Acoustic Materials and Noise Control Strategies – A Review
,”
Appl. Mater. Today
,
24
, p.
101141
.
20.
Fan
,
J.
,
Zhang
,
L.
,
Wei
,
S.
,
Zhang
,
Z.
,
Choi
,
S.-K.
,
Song
,
B.
, and
Shi
,
Y.
,
2021
, “
A Review of Additive Manufacturing of Metamaterials and Developing Trends
,”
Mater. Today
,
50
, pp.
303
328
.
21.
Liu
,
Y.
,
Zhao
,
D.
,
Yan
,
Z.
,
Sun
,
W.
,
Guo
,
P.
, and
Tan
,
T.
,
2023
, “
Reprogrammable Acoustic Metamaterials for Multiband Energy Harvesting
,”
Eng. Struct.
,
288
, p.
116207
.
22.
Ji
,
G.
,
Zhou
,
J.
, and
Huber
,
J.
,
2023
, “
The Evaluation of Electrical Circuits for Adjusting Sound Transmission Properties of Piezoelectric Metamaterials
,”
Mech. Syst. Signal Process.
,
200
, p.
110549
.
23.
Gao
,
N.
,
Zhang
,
Z.
,
Deng
,
J.
,
Guo
,
X.
,
Cheng
,
B.
, and
Hou
,
H.
,
2022
, “
Acoustic Metamaterials for Noise Reduction: A Review
,”
Adv. Mater. Technol.
7
(
6
), p.
2100698
.
24.
Yang
,
Z.
,
Mei
,
J.
,
Yang
,
M.
,
Chan
,
N.
, and
Sheng
,
P.
,
2008
, “
Membrane-Type Acoustic Metamaterial With Negative Dynamic Mass
,”
Phys. Rev. Lett.
,
101
(
20
), p.
204301
.
25.
Xu
,
Q.
,
Qiao
,
J.
,
Sun
,
J.
,
Zhang
,
G.
, and
Li
,
L.
,
2021
, “
A Tunable Massless Membrane Metamaterial for Perfect and Low-Frequency Sound Absorption
,”
J. Sound Vib.
,
493
, p.
115823
.
26.
Cao
,
E.
,
Jia
,
B.
,
Guo
,
D.
,
Li
,
B.
,
Wang
,
W.
, and
Huang
,
H.
,
2023
, “
Bionic Design and Numerical Studies of Spider Web-Inspired Membrane-Type Acoustic Metamaterials
,”
Compos. Struct.
,
315
, p.
117010
.
27.
Peng
,
L.
, and
Bao
,
B.
,
2023
, “
Optimized Membrane-Type Acoustic Metamaterials for Alleviating Engineering Fatigue Damage via Lightweight Optimization
,”
Eng. Struct.
,
292
, p.
116550
.
28.
Wu
,
C. C.
,
Loke
,
S. C.
,
Lu
,
Z.
,
Shrestha
,
M.
,
Khoo
,
B. C.
, and
Lau
,
G.-K.
,
2023
, “
Transformation From Helmholtz to Membrane Resonance by Electro-Adhesive Zip of a Double-Layer Micro-Slit Acoustic Absorber
,”
Adv. Mater. Technol.
,
8
(
10
), p.
2201757
.
29.
Zeng
,
K.
,
Li
,
Z.
,
Guo
,
Z.
,
Liang
,
X.
, and
Wang
,
Z.
,
2022
, “
Acoustic Metamaterial for Highly Efficient Low-Frequency Impedance Modulation by Extensible Design
,”
Extreme Mech. Lett.
,
56
, p.
101855
.
30.
Huang
,
S.
,
Fang
,
X.
,
Wang
,
X.
,
Assouar
,
B.
,
Cheng
,
Q.
, and
Li
,
Y.
,
2019
, “
Acoustic Perfect Absorbers Via Helmholtz Resonators With Embedded Apertures
,”
J. Acoust. Soc. Am.
,
145
(
1
), pp.
254
262
.
31.
Pishvar
,
M.
, and
Harne
,
R. L.
,
2022
, “
Nonlinear Behavior of Helmholtz Resonator With a Compliant Wall for Low-Frequency, Broadband Noise Control
,”
ASME J. Vib. Acoust.
,
144
(
3
), p.
031008
.
32.
Li
,
Y.
, and
Assouar
,
B. M.
,
2016
, “
Acoustic Metasurface-Based Perfect Absorber With Deep Subwavelength Thickness
,”
Appl. Phys. Lett.
,
108
(
6
), p.
063502
.
33.
Sun
,
P.
,
Xu
,
S.
,
Wang
,
X.
,
Gu
,
L.
,
Luo
,
X.
,
Zhao
,
C.
, and
Huang
,
Z.
,
2023
, “
Sound Absorption of Space-Coiled Metamaterials With Soft Walls
,”
Int. J. Mech. Sci.
,
261
, p.
108696
.
34.
Liang
,
M.
,
Wu
,
H.
,
Chen
,
S.
,
Fu
,
Z.
,
Zhang
,
R.
, and
Xing
,
Z.
,
2023
, “
Simulated and Experimental Research on Highly Efficient Sound Absorption of Low-Frequency Broadband Acoustic Metamaterial Based on Coiled-Up Space
,”
Adv. Eng. Mater.
,
25
(
22
), p.
2301221
.
35.
Ma
,
X.
,
Yurchenko
,
D.
,
Chen
,
K.
,
Wang
,
L.
,
Liu
,
Y.
, and
Yang
,
K.
,
2022
, “
Structural Acoustic Controlled Active Micro-Perforated Panel Absorber for Improving Wide-Band Low Frequency Sound Absorption
,”
Mech. Syst. Signal Process.
,
178
, p.
109295
.
36.
Sakagami
,
K.
,
Nakamori
,
T.
,
Morimoto
,
M.
, and
Yairi
,
M.
,
2009
, “
Double-Leaf Microperforated Panel Space Absorbers: A Revised Theory and Detailed Analysis
,”
Appl. Acoust.
,
70
(
5
), pp.
703
709
.
37.
Zhu
,
X.
,
Chen
,
Z.
,
Jiao
,
Y.
, and
Wang
,
Y.
,
2018
, “
Broadening of the Sound Absorption Bandwidth of the Perforated Panel Using a Membrane-Type Resonator
,”
ASME J. Vib. Acoust.
,
140
(
3
), p.
031014
.
38.
Tsuruta
,
R.
,
Li
,
X.
,
Yu
,
Z.
,
Iizuka
,
H.
, and
Lee
,
T.
,
2022
, “
Reconfigurable Acoustic Absorber Comprising Flexible Tubular Resonators for Broadband Sound Absorption
,”
Phys. Rev. Appl.
,
18
(
1
), p.
014055
.
39.
Xu
,
H.
,
Hu
,
M.
, and
Kong
,
D.
,
2024
, “
A Parallel Piezoelectric Micro-Perforated Panel Absorber With Flexible Acoustic Characteristics
,”
Smart Mater. Struct.
,
33
(
1
), p.
017001
.
40.
Liu
,
G.-S.
,
Peng
,
Y.-Y.
,
Liu
,
M.-H.
,
Zou
,
X.-Y.
, and
Cheng
,
J.-C.
,
2018
, “
Broadband Acoustic Energy Harvesting Metasurface With Coupled Helmholtz Resonators
,”
Appl. Phys. Lett.
,
113
(
15
), p.
153503
.
41.
Liu
,
Z.
,
Zhang
,
X.
,
Mao
,
Y.
,
Zhu
,
Y.
,
Yang
,
Z.
,
Chan
,
C. T.
, and
Sheng
,
P.
,
2000
, “
Locally Resonant Sonic Materials
,”
Science
,
289
(
5485
), pp.
1734
1736
.
42.
Gulia
,
P.
, and
Gupta
,
A.
,
2019
, “
Sound Attenuation in Triple Panel Using Locally Resonant Sonic Crystal and Porous Material
,”
Appl. Acoust.
,
156
, pp.
113
119
.
43.
Rybin
,
M. V.
,
Khanikaev
,
A. B.
,
Inoue
,
M.
,
Samusev
,
K. B.
,
Steel
,
M. J.
,
Yushin
,
G.
, and
Limonov
,
M. F.
,
2009
, “
Fano Resonance Between Mie and Bragg Scattering in Photonic Crystals
,”
Phys. Rev. Lett.
,
103
(
2
), p.
023901
.
44.
Ye
,
Y.
,
Mei
,
C.
,
Li
,
L.
,
Wang
,
X.
,
Ling
,
L.
, and
Hu
,
Y.
,
2022
, “
Broadening Band Gaps of Bragg Scattering Phononic Crystal With Graded Supercell Configuration
,”
ASME J. Vib. Acoust.
,
144
(
6
), p.
061010
.
45.
Choi
,
C.
,
Bansal
,
S.
,
Münzenrieder
,
N.
, and
Subramanian
,
S.
,
2021
, “
Fabricating and Assembling Acoustic Metamaterials and Phononic Crystals
,”
Adv. Eng. Mater.
,
23
(
2
), p.
2000988
.
46.
Stinson
,
M. R.
,
1991
, “
The Propagation of Plane Sound Waves in Narrow and Wide Circular Tubes, and Generalization to Uniform Tubes of Arbitrary Cross-Sectional Shape
,”
J. Acoust. Soc. Am.
,
89
(
2
), pp.
550
558
.
47.
Allam
,
S.
, and
Åbom
,
M.
,
2011
, “
A New Type of Muffler Based on Microperforated Tubes
,”
ASME J. Vib. Acoust.
,
133
(
3
), p.
031005
.
48.
Ma
,
P.
,
Wang
,
H.
,
Liu
,
Y.
,
Jin
,
X.
,
Wang
,
F.
, and
Fan
,
X.
,
2022
, “
New Broadband Metasurface Acoustic Liner Design Method Based on a Schroeder Diffuser Sequence
,”
J. Aerosp. Eng.
,
35
(
4
), p.
04022047
.
49.
Zhu
,
J.
,
Gao
,
H.
,
Dai
,
S.
,
Qu
,
Y.
, and
Meng
,
G.
,
2023
, “
Multilayer Structures for High-Intensity Sound Energy Absorption in Low-Frequency Range
,”
Int. J. Mech. Sci.
,
247
, p.
108197
.
50.
Liu
,
C.
,
Shi
,
J.
,
Zhao
,
W.
,
Zhou
,
X.
,
Ma
,
C.
,
Peng
,
R.
,
Wang
,
M.
,
Hang
,
Z.
,
Liu
,
X.
, and
Christensen
,
J.
,
2021
, “
Three-Dimensional Soundproof Acoustic Metacage
,”
Phys. Rev. Lett.
,
127
(
8
), p.
084301
.
51.
Huang
,
S.
,
Zhou
,
Z.
,
Li
,
D.
,
Liu
,
T.
,
Wang
,
X.
,
Zhu
,
J.
, and
Li
,
Y.
,
2020
, “
Compact Broadband Acoustic Sink With Coherently Coupled Weak Resonances
,”
Sci. Bull.
,
65
(
5
), pp.
373
379
.
52.
Long
,
H.
,
Liu
,
C.
,
Shao
,
C.
,
Cheng
,
Y.
,
Tao
,
J.
,
Qiu
,
X.
, and
Liu
,
X.
,
2020
, “
Tunable and Broadband Asymmetric Sound Absorptions With Coupling of Acoustic Bright and Dark Modes
,”
J. Sound Vib.
,
479
, p.
115371
.
You do not currently have access to this content.